Why Multispecies model Case study Simulation Next steps

Same data different story:
guidelines for data weighting in a multispecies statistical catch-at-age stock assessment framework

Kelli F. Johnson and André E. Punt

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA

October 21, 2015
1. Why

2. Multispecies model

3. Case study

4. Simulation

5. Next steps
Why perform stock assessments

- Goal of stock assessment models:
 "... understand, and inform decision-makers of, the consequences of possible fishing activities." (Hollowed et al., 2000)
Why perform stock assessments

- Goal of stock assessment models:
 "... understand, and inform decision-makers of, the consequences of possible fishing activities." (Hollowed et al., 2000)

- Ecosystem based management
 "... shorthand for more holistic approaches to resource management." (Larkin, 1996)
Goal of stock assessment models:
“... understand, and inform decision-makers of, the consequences of possible fishing activities.” (Hollowed et al., 2000)

Ecosystem based management
“... shorthand for more holistic approaches to resource management.” (Larkin, 1996)

Goal of **multispecies** stock assessment models:
explicitly represent species interactions, providing a framework for evaluating ecosystem properties and improved estimates of management quantities.
Barriers to multispecies stock assessments

- increased data requirements
Barriers to multispecies stock assessments

- increased data requirements
- increased uncertainty in model output
Barriers to multispecies stock assessments

- increased data requirements
- increased uncertainty in model output
- decreased transparency associated with increasing complexity
Barriers to multispecies stock assessments

- increased data requirements
- increased uncertainty in model output
- decreased transparency associated with increasing complexity
- lack methods for calculating management reference points
Barriers to multispecies stock assessments

- increased data requirements
- increased uncertainty in model output
- decreased transparency associated with increasing complexity
- lack methods for calculating management reference points
Statistical catch-at-age multispecies models

- age-structured forward projection
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

admb
FAST, ACCURATE, STABLE OPTIMIZATION
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

![admb](https://example.com/admb.png)
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

Assessment Method for Alaska (AMAK; J. Ianelli)
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

Assessment Method for Alaska (AMAK; J. Ianelli)

Kinzey and Punt, 2009
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

Assessment Method for Alaska (AMAK; J. Ianelli)

Kinzey and Punt, 2009

Van Kirk et al., 2010, 2012, 2015
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

Assessment Method for Alaska (AMAK; J. Ianelli)

Kinzey and Punt, 2009 → Van Kirk et al., 2010, 2012, 2015 → Curti et al., 2013
Statistical catch-at-age multispecies models

- age-structured forward projection
- maximum likelihood

- Assessment Method for Alaska (AMAK; J. Ianelli)

- Kinzey and Punt, 2009
- Van Kirk et al., 2010, 2012, 2015
- Curti et al., 2013

- Johnson et al., 201?
Case study

- Aleutian Islands, Alaska
Case study

- Aleutian Islands, Alaska
 - walleye pollock (*Theragra chalcogramma*)
Case study

- Aleutian Islands, Alaska
 - walleye pollock (*Theragra chalcogramma*)
 - Atka mackerel (*Pleurogrammus monopterygius*)
Case study

- Aleutian Islands, Alaska
 - walleye pollock (*Theragra chalcogramma*)
 - Atka mackerel (*Pleurogrammus monopterygius*)
 - Pacific cod (*Gadus macrocephalus*)
Case study

- Aleutian Islands, Alaska
 - walleye pollock (*Theragra chalcogramma*)
 - Atka mackerel (*Pleurogrammus monopterygius*)
 - Pacific cod (*Gadus macrocephalus*)

- foodweb (blue = predator)
Fixed inputs

- Pacific cod
 - Atka mackerel
 - walleye pollock
Fixed inputs

- Pacific cod
 - Atka mackerel
 - walleye pollock

Steepness: fixed at individual assessment values (0.7, 0.8, & 1.0)
Fixed inputs

- Pacific cod
 - Atka mackerel
 - Walleye pollock

Steepness: fixed at individual assessment values (0.7, 0.8, & 1.0)
Data 'moderate' system
Operating model

- Fishery
- Survey
- Diet

Graphs showing changes in biomass over time for pollock, mackerel, and cod.
Methods

Weighting

<table>
<thead>
<tr>
<th>distribution</th>
<th>weight</th>
<th>types</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>se_{year}</td>
<td>survey</td>
</tr>
<tr>
<td>lognormal</td>
<td>cv</td>
<td>catch</td>
</tr>
<tr>
<td>multinomial</td>
<td>n</td>
<td>age, length, & diet comps</td>
</tr>
</tbody>
</table>
Methods

Weighting

<table>
<thead>
<tr>
<th>distribution</th>
<th>weight</th>
<th>types</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>se_{year}</td>
<td>survey</td>
</tr>
<tr>
<td>lognormal</td>
<td>cv</td>
<td>catch</td>
</tr>
<tr>
<td>multinomial</td>
<td>n</td>
<td>age, length, & diet comps</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>source</th>
<th>type</th>
<th>OM</th>
<th>EM_1</th>
<th>EM_2</th>
<th>EM_3</th>
<th>EM_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>fishery</td>
<td>catch</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fishery</td>
<td>age & length</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>survey</td>
<td>index</td>
<td>1</td>
<td>0.01</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>survey</td>
<td>age & length</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>survey</td>
<td>diet weight</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>survey</td>
<td>diet length</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>200</td>
<td>1000</td>
</tr>
</tbody>
</table>
Model performance metrics

- Unfished spawning biomass
- Unfished recruitment
- Biomass available to survey
- Spawning biomass
- Annual recruitment
- Fishing mortality
Results

Box plots showing the distribution of multivariate data for different species:

- **Pollock**
- **Mackerel**
- **Cod**

The plots display the data range, median, quartiles, and outliers for each species.
Results

[Box plots for pollock, mackerel, and cod showing distribution of data points and outliers across different categories such as om, 1, 100, 200, and 1000.]
Results

[Box plots showing data distribution for different species (pollock, mackerel, cod).]
Results

[Graphs showing time series data for different species, labeled om, pollock, mackerel, and cod. Each graph represents data over years with a y-axis ranging from 0 to 2500 and an x-axis representing years from 0 to 250.]
Results

- **Why Multispecies model**
- **Case study**
- **Simulation**
- **Next steps**

Johnson & Punt

Multispecies data weighting
Results
Results

Graphs showing results for different species and years.

- Species: pollock, mackerel, cod trawl, cod pot, cod longline.
- Years: om, 1, 100, 200, 1000.
- Y-axis: Fully selected F.
- X-axis: Year.

Johnson & Punt
Next steps

- Coding tasks
Next steps

- Coding tasks
 - Initial conditions
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)

Next steps
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)

- Add 2004:2015 data
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting \((\text{McAllister \& Ianelli, 1997; Stewart \& Hamel, 2014})\)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)

- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods

- Tasks for others or post-doc
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)
- Add 2004:2015 data
- Add OMs and EMs
 - Add process error
 - Weighting methods
- Tasks for others or post-doc
 - Two species model
Next steps

- Coding tasks
 - Initial conditions
 - Lognormal survey likelihood
 - Iterative reweighting (McAllister & Ianelli, 1997; Stewart & Hamel, 2014)

- Add 2004:2015 data

- Add OMs and EMs
 - Add process error
 - Weighting methods

- Tasks for others or post-doc
 - Two species model
 - Move beyond self-test and estimate using Atlantis data
Acknowledgements

- Dr. Doug Kinzey (SWFSC)
- Alaska Fisheries Science Center
- Northwest Fisheries Science Center
- NOAA / Sea Grant Population Dynamics Fellowship