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Blue Ling Area of Interest

−14 −12 −10 −8 −6

5
4

5
6

5
8

6
0

6
2

Edge6

New5

New6

Other6

Ref5

2 / 35



The Data

I 19 French deep-sea trawlers operating in the Northeast
Atlantic during the period 2000-2010.

I Variables: landings (biomass in kg) by species, latitude
and longitude, mean fishing depth, haul duration a proxy
for effort .

I Use subset: haul duration between 30 and 600 mins, haul
depth between 200 and 1100m

I Zero landings indicate no abundance or very low
abundance of blue ling in the specific area and time.

I By-catch of blue ling is always possible (not affected by
differences in fishing techniques due to targetting).
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Positions of hauls per year
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Observed median monthly catch (log kg) per hour by
year and fishing areas.
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19% of zero hauls.
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The questions

I What is the relative overall trend of blue ling abundance?
I Is there any evidence for a space-time interaction,

supporting the hypotheses of:
I local depletion in areas with longer exploitation histories?
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Challenges

1. complex space-time data, with a spatially complicated
domain

I The spatial boundary of blue ling is complicated, depending
on the topography of the sea bed.

I We want to avoid smoothing accross boundary features,
such as areas which are separated by a deep canyon.

I Inappropriately imposing smoothness across boundary
features might induce model mis-specification.

I Will need to test whether space-time interactions are
present.

2. fishery industry data - preferential sampling
3. continuous response with many zeros (19%)

7 / 35



Solutions

I Use a generalised additive mixed model (GAMM)
incorporating a smooth function of space and time (1)

I tensor product from a soap film smooth of space and a
penalised regression spline for time (1)

I model checking and validation to ensure there is no model
mis-specification (1,2)

I Control for effects of fisheries management, targeting and
species behaviour (2)

I Tweedie distribution (3)
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Blue Ling model

I Reponse ’kg blue Ling in haul i ’, yi , n = 17 614
observations

I Full model is

log(µi) = f1(durationi) + f2(depthi ,yeari) + vk(i)

+ f5(depthi ,monthi) + f3(depthi) + f4(monthi)

+ f6(northi ,easti ,yeari), (1)

I µi = E(yi) and yi ∼ Tweedie(µi , φµ
p
i ), p = 1.5;

I vk(i) is a random vessel effect, assumed i.i.d. N(0, σ2
v );

I f1−6 are smooth functions of the covariates available with
each haul.

I RED: effects of fisheries management and targetting;
I BLACK: biological effects.
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Blue Ling model ...cont’d

I f1(durationi) and f3(depthi): thin plate regression
splines (TPRS);

I f4(monthi): cyclic cubic regression spline (CCRS)
I f2(depthi ,yeari): 2d tensor product of a TPRS and cubic

regression spline (CRS);
I f5(depthi ,monthi): 2d tensor product of a tensor product

of a TPRS and a CCRS.
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f6(northi ,easti ,yeari)

I 3D tensor product of two marginal bases and penalties for
time and space:

I fn,e(north,east) and fy (year)
2-d isotropic smoother for space and a 1-d CRS for year

I allows spatial smooth to be isotropic while being invariant
to relative scaling of space and time (Augustin et al, 2009).

I fn,e(north,east)
I compare the performance of a soap film smooth with a

TPRS
I soap film smooth will respect the biological boundary, but

require manual knot selection;
I TPRS will smooth accross boundary features, possibly

leading to model mis-specification, but no knot selection
required.
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Soap film smoother (Wood et al, 2008)
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Tensor product smooths

I A time varying spatial soap film can be constructed as a
(pair of) tensor product smooth(s).

I Tensor product smooths are best explained using a 2D
example.

I Consider constructing a smooth of x , z.
I Start by choosing marginal bases and penalties, as if

constructing 1-D smooths of x and z. e.g.

fx(x) =
∑

αiai(x), fz(z) =
∑

βjbj(z),

Jx(fx) =
∫

f ′′x (x)
2dx = αTSxα & Jz(fz) = BTSzB
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Marginal reparameterization

I Suppose we start with fz(z) =
∑6

i=1 βjbj(z), on the left.

0.0 0.2 0.4 0.6 0.8 1.0

0
.1

0
.3

0
.5

z

f z
(z

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.1

0
.3

0
.5

z

f z
(z

)
I We can always re-parameterize so that its coefficients are

functions heights, at knots (right). Do same for fx .
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Making fz depend on x
I Can make fz a function of x by letting its coefficients vary

smoothly with x
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The complete tensor product smooth
I Use fx basis to let fz coefficients vary smoothly (left).
I Construct in symmetric (see right).
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Tensor product penalties - one per margin
I x-wiggliness: sum marginal x penalties over red curves.
I z-wiggliness: sum marginal z penalties over green curves.
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Tensor product expressions
I So the tensor product basis construction gives:

f (x , z) =
∑∑

βijbj(z)ai(x)

I With double penalties

J∗z (f ) = βTII ⊗ Szβ and J∗x (f ) = βTSx ⊗ IJβ

I The construction generalizes to any number of marginals
and multi-dimensional marginals.

I In particular a tensor product of a soap film and a 1D
smooth of time is possible.

I The soap film smoother is separated into the
boundary-interpolating-film and the deviation-from-film
parts, and tensor products with time are formed for each.
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Boundary and knots
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Parameter estimation - use Bayesian representation of
generalised linear mixed model (GLMM)

for hauls yi ∼ EF(µi , φ)

g(µi) = f1(durationi) + f2(depthi ,yeari) + vk(i)

+ f5(depthi ,monthi) + f3(depthi) + f4(monthi)

+ f6(northi ,easti ,yeari)

g(µi) = Xiβ

I Xi is a row of the model matrix of all model components of
the model including all the basis functions evaluated at
observations i ;

I parameter vector β contains all coefficients.
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Parameter estimation - cont’d
I smoothing penality

∑
j λjβ

TSjβ.
I (inproper) prior, each component is a Gaussian (intrinsic)

random field
β ∼ N(0, (

∑
j

λjSj)
−φ)

I estimates/posterior modes for β

β̂ = argmax
β

l(β)− 1
2φ

∑
j

λjβ
TSjβ

in practice use PIRLS
I posterior (large sample approximation)

β|y ∼ N(β̂, (XT WX +
∑

j

λjSj)
−1φ)

with W = diag(wi) - usual GLM weights
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Parameter estimation - cont’d

I Find λ̂ using a Laplace approximation of the Bayesian
marginal log likelihood (REML, empirical Bayes)

λ̂ = argmax
λ

log
∫

L(β)f (β)dβ

in practice use Newtons’s method (with exact derivatives
using implicit differentiation)

I nested iteration scheme is implemented in the gam()
function of the mgcv R package.

I Estimate temporal trends with Bayesian credible intervals
by sampling from the posterior of β̂.
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Model selection

Based on root mean square prediction error (RMSPE)
estimated by cross-validation

1. Start with full model and check whether the random vessel
effect can be replaced by a linear effect of vessel power.

2. Is space-time additive?
3. Is the soap smoother necessary for the spatial effect?
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Models

Model (number) Terms Spatial smoother
Base f1(durationi) + f2(depthi , yeari)

+f3(depthi) + f4(monthi) + f5(depthi ,monthi) –
Full.ves (1a) Base +vk(i) + f6(northi ,easti , yeari) soap
Full.pow (2a) Base +βpowerk(i) + f6(northi ,easti , yeari) soap
Add.ves (3a) Base +vk(i) + f7(northi ,easti) + f8(yeari) soap
Add.pow (4a) Base +βpowerk(i) + f7(northi ,easti) + f8(yeari) soap
Nosoap.full.ves (1b) Base +vk(i) + f9(northi ,easti , yeari) TPRS
Nosoap.full.pow (2b) Base +βpowerk(i) + f9(northi ,easti , yeari) TPRS
Nosoap.add.ves (3b) Base +vk(i) + f10(northi ,easti) + f11(yeari) TPRS
Nosoap.add.pow (4b) Base +βpowerk(i) + f10(northi ,easti) + f11(yeari) TPRS

1a - 4a use soap smoother for space;
1b - 4b use thin-plate regression spline (TPRS) for space.
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Model statistics and 11-fold cross validation results.

Model (number) edf RMSPER RMSPEV RMSPER

overall overall edge6 new5 new6 other6 ref5
Full.ves (1a) 335.98 699.43 705.08 431.73 1115.22 843.57 445.87 1065.99
Full.pow (2a) 319.15 695.80 702.42 436.08 1078.32 849.82 446.02 1063.30
Add.ves (3a) 208.95 711.04 705.13 427.55 1080.71 875.78 426.98 1121.14
Add.pow (4a) 210.17 708.33 702.78 430.64 1062.11 883.37 426.82 1115.93
Nosoap.full.ves (1b) 376.23 700.13 705.28 425.99 1132.29 855.42 431.43 1073.31
Nosoap.full.pow (2b) 362.44 697.49 704.74 430.17 1100.65 860.24 431.53 1071.76
Nosoap.add.ves (3b) 218.68 707.61 704.78 424.50 1087.72 880.94 423.22 1111.81
Nosoap.add.pow (4b) 202.19 705.45 703.71 427.74 1074.07 886.84 423.05 1106.74

Selected model: Full.pow (2a)
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Selected model

log(µi) = f1(durationi) + f2(depthi ,yeari) + βpowerk

f3(depthi) + f4(monthi) + f5(depthi ,monthi)

+ f6(northi ,easti ,yeari), (2)
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Model checking - Empirical variograms of Pearson
residuals per vessel along the time-axis.
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Model effects: Month smooth with ± two standard
errors (left); Depth-month smooth (right).
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Fitted spatial model smooths by year for model 2a
(soap smoother) and model 3b (TPRS smoother)
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Time trends by area (January) and for two spawning
areas (April)
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Some conclusions

I 3d tensor product of soap film smooth for space and CRS
smooth for year allowed us to test for the presence of
space-time interaction.

I Soap film smoother ensures that we are not smoothing
accross the complicated boundary.

I What is the time trend of blue ling abundance? It appears
to be constant/increasing.

I Is there any evidence for localised depletions in areas with
a longer exploitation history? yes - maybe. Space-time
interaction term is required.

I Cannot assess how biased our results since data are
based on preferential sampling. But our model allows to
control for effects of fisheries management and targetting.
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Kai et al (2017) - Spatio-temporal distribution of
pelagic sharks

Model catch yi of set i with µi = E(yi) with yi ∼ EF(µi , φ)

µi = efforti d(si , ti ,qi)

log(µi) = log(efforti) + α1ti + α2qi + γ(si) + θ(si , ti) + ω(si ,qi)

+ β1SSTj + β2SST2
j

I with station si (at 1o lat lon resolution), ti=1,...,20 (year
quarters of 2010 - 2015), quarter qi ;

I α1ti , α2qi are factor variables for the year quarters of 2010
to 2015 and quarter respectively;

I γ ∼ MVN(0, σ2
γRspatial) GMRF, i.e. a random effect for

space with Matérn correlation structure;
I θ(si , ti) ∼ MVN(0, σ2

θRκspatial ⊗ RρAR1),
I ω(si ,qi) ∼ MVN(0, σ2

ωRκspatial ⊗ RρAR1),
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Connection between different approaches

I Smooths, random effects and Gaussian (Markov) random
fields are equivalent (Kimeldorf and Wahba, 1970,
Silverman, 1985).

I Mixed model software can be used to estimate
smooths/GAMs and conversely software for estimating
smooths can be used to estimate Gaussian random effects
(Verbyla et al, 1999; Ruppert et al, 2003);

I Smoother penalty matrix is equivalent to assumed
precision matrix of the MVN prior of the random field;
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Connection/comparison cont’d

I TMB and mgcv use first order Laplace approximation to
marginal likelihood; INLA uses higher order Laplace
approximation
- if using a GMRF smoother TMB and INLA exploit
sparsity, mgcv uses a reduced rank approx. of it.

I mgcv - computational efficiency through reduced rank
method.
Efficient with big data, many predictors with non-linear
effects and a standard model structure - can only use built
in distributions.

I INLA - efficient because of sparsity of precision matrix; can
only use the built in distributions and smoothers (Gaussian
Markov random fields);

I TMB - very flexible, efficient for non-standard models; but
high memory footprint (backward automatic differentiation).
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