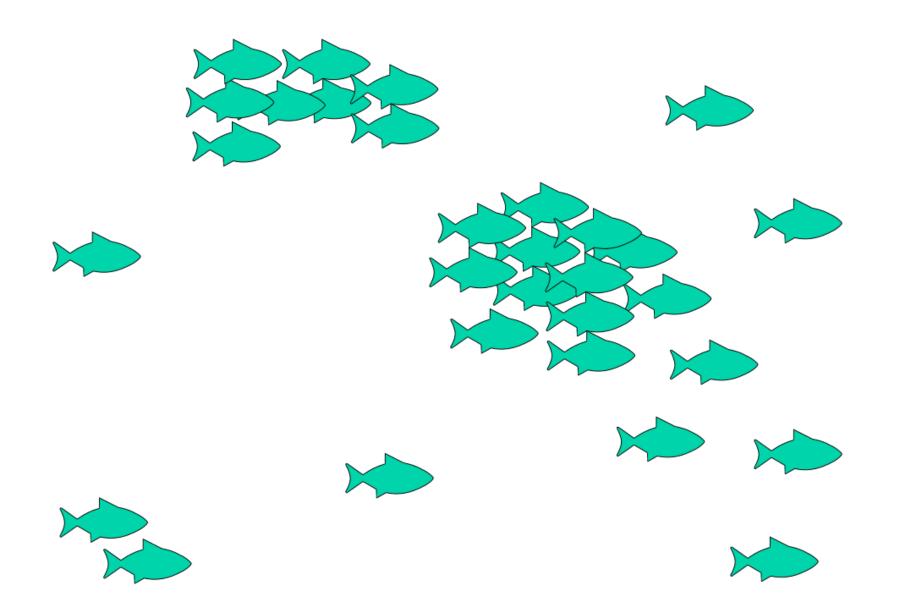
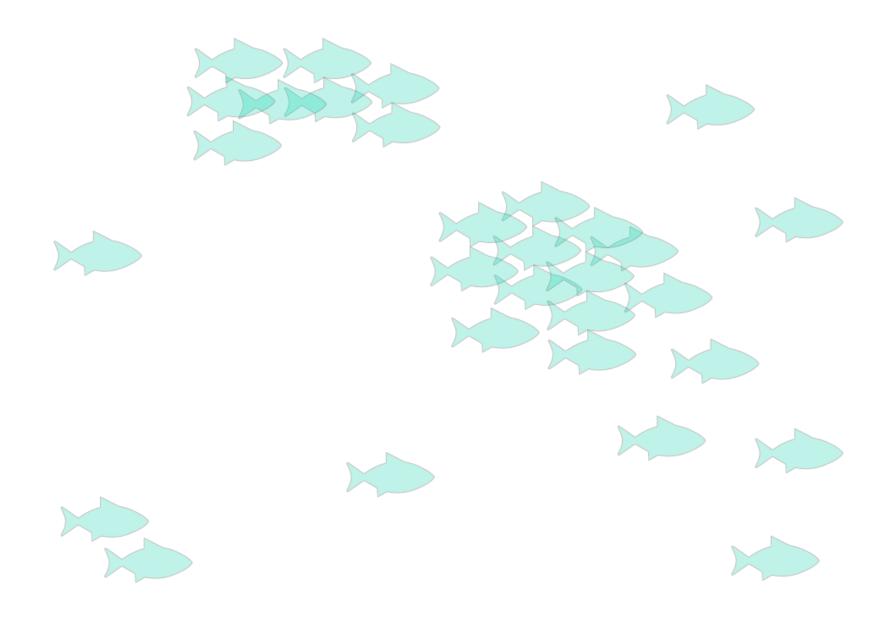
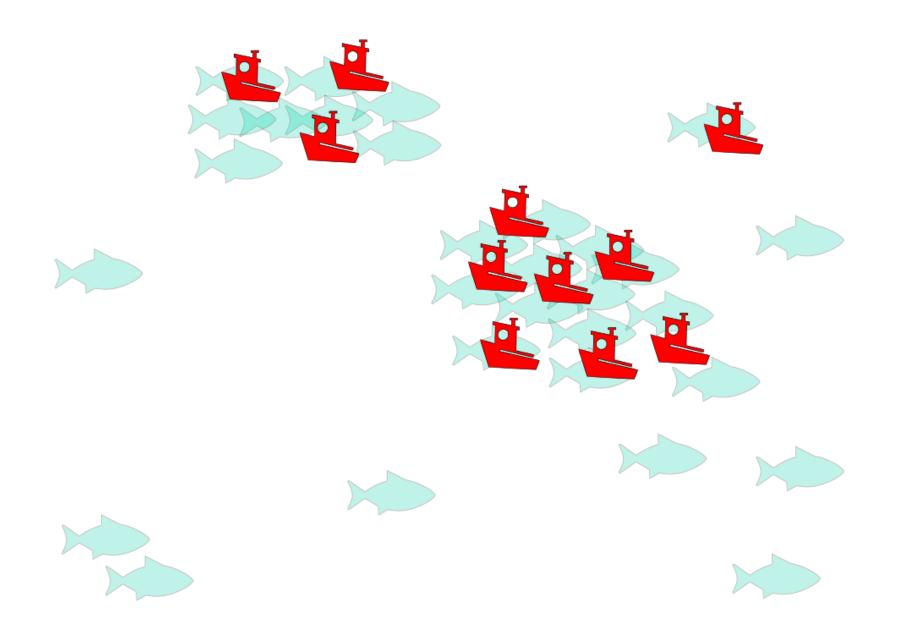
Fishery-dependent data in a spatio-temporal context

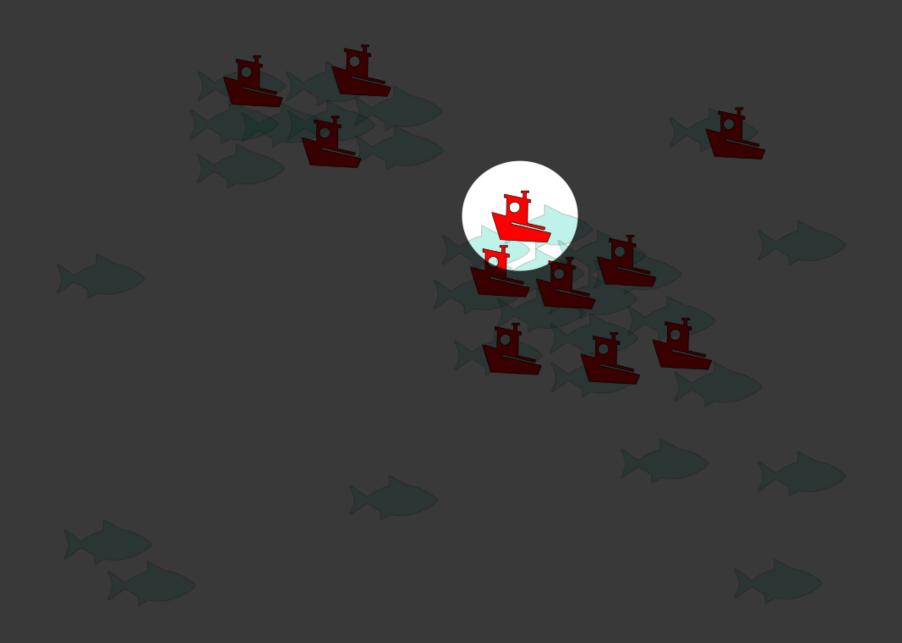
John Best

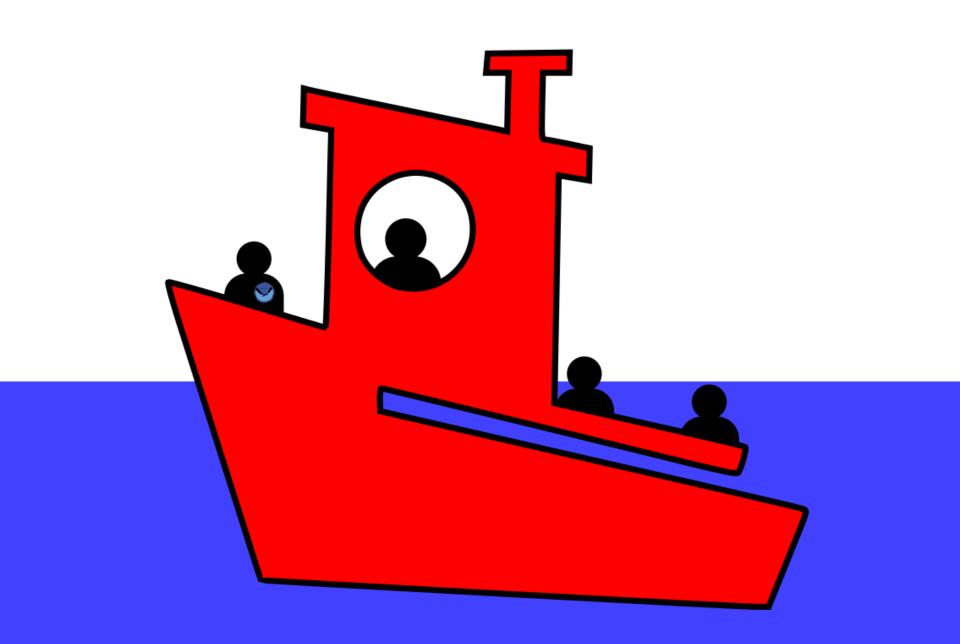
University of Washington

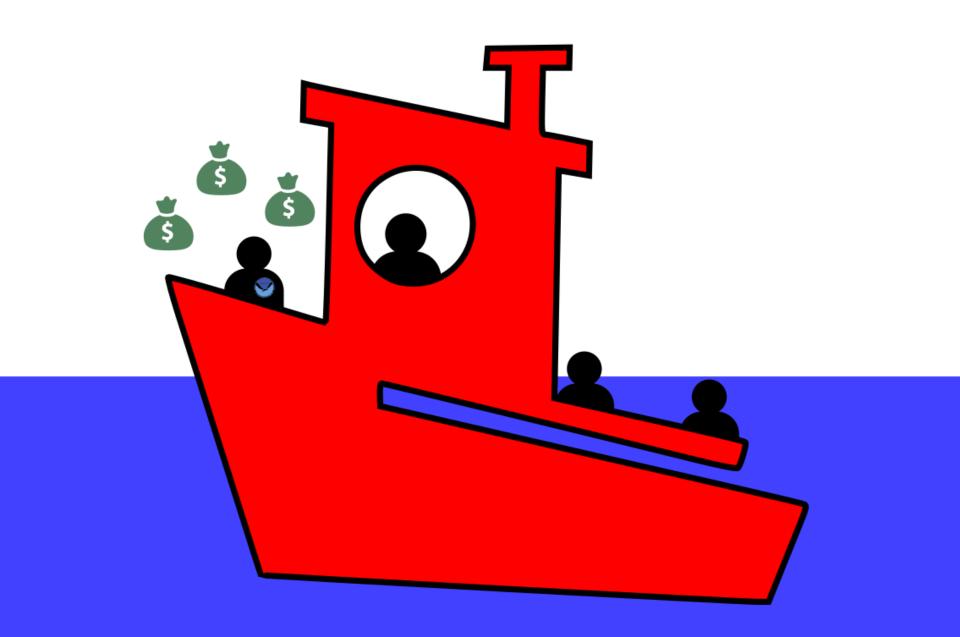




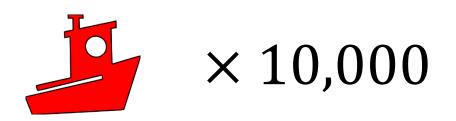




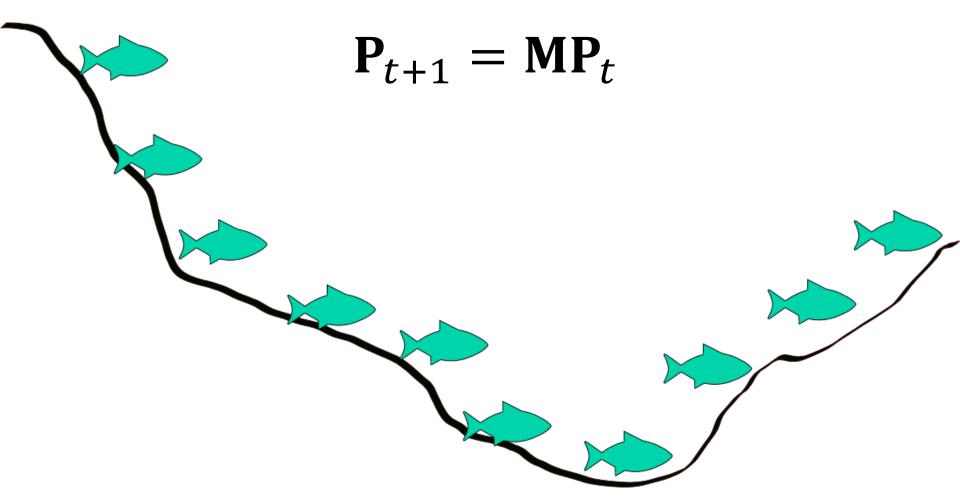




There's a lot more information in fishery data



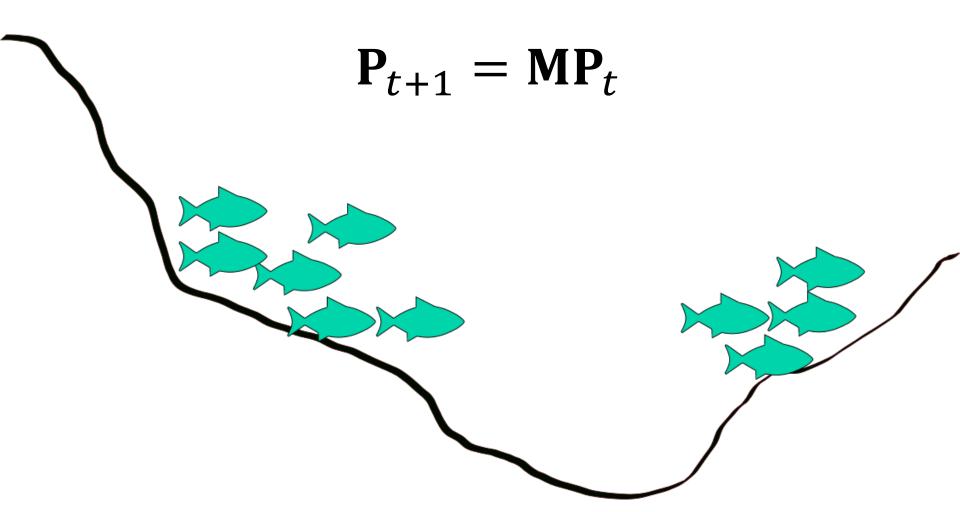
Spatial structure can be induced through movement



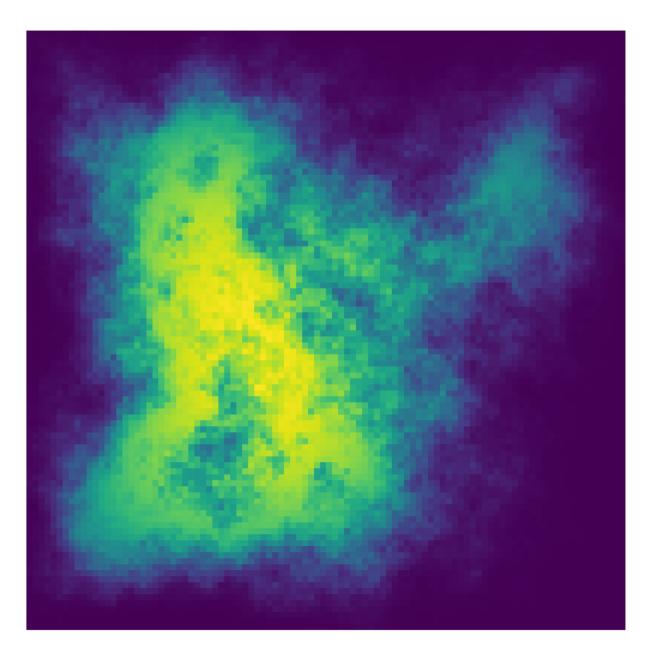
Spatial structure can be induced through movement



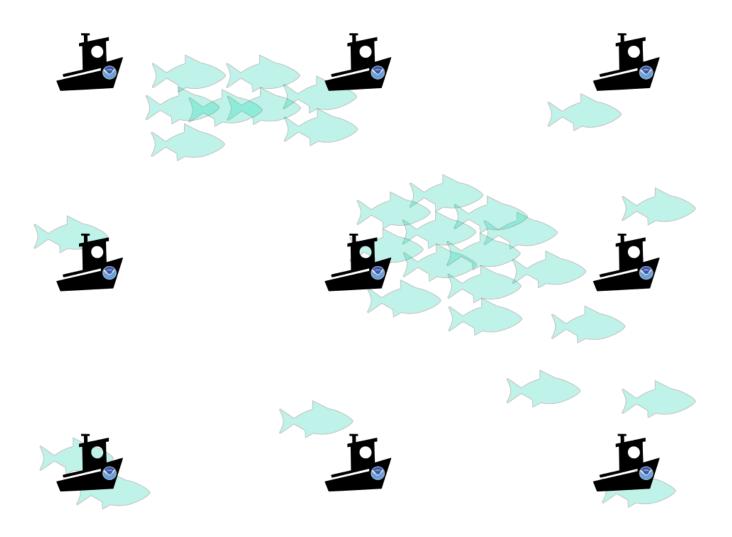
Spatial structure can be induced through movement



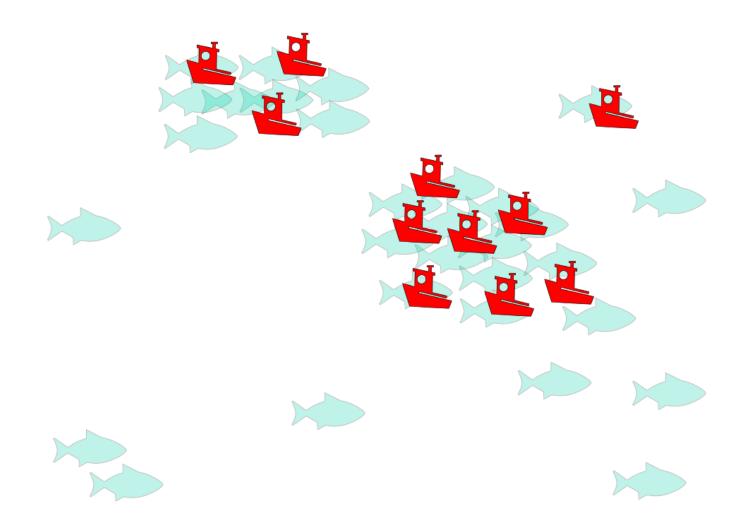
Example abundance map



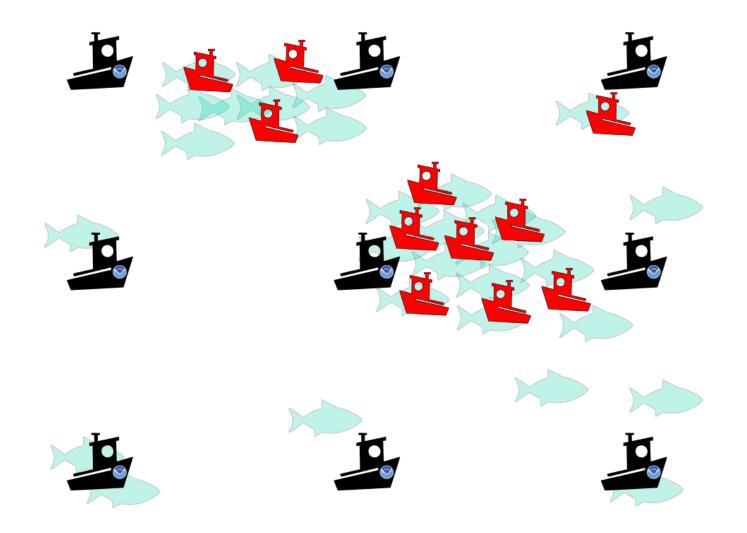
Targeting varies by fleet



Targeting varies by fleet



Targeting varies by fleet



Schaefer population dynamics

$$p_{s,t+1} = p_{s,t} + rp_{s,t} \left(1 - \frac{\sum_{s} p_{s,t}}{K_t} \right)$$

$$K_t \sim \text{LogNormal}\left(\log(\overline{K}) - \frac{0.1^2}{2}, 0.1^2\right)$$

VAST makes model fitting easy

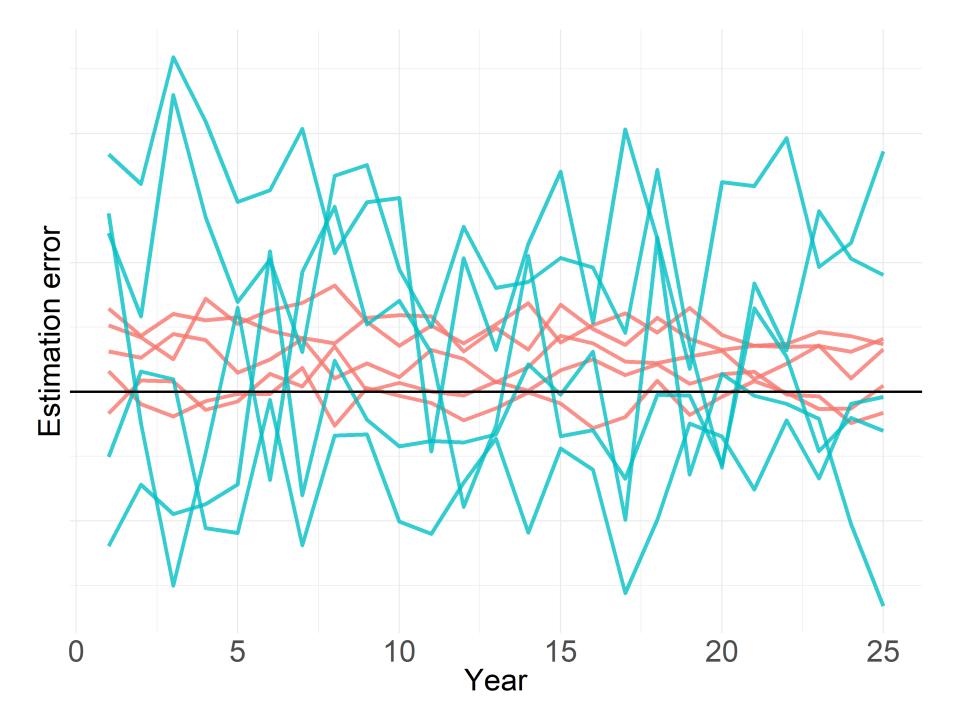
$$r_{1}(s,t) = 1 - \exp([1 - a_{i} \exp(p_{1}(s,t)]))$$
$$Pr(C_{s,t} > 0) = r_{1}(s,t)$$
$$r_{2}(s,t) = \frac{a_{i} \exp(p_{1}(s,t))}{r_{1}(s,t)} \exp(p_{2}(s,t))$$

 $C_{s,t} \mid C_{s,t} > 0 \sim \text{LogNormal}(r_2(s,t),\sigma^2)$

VAST makes model fitting easy

$$p_1(s,t) = \beta_1(t) + \omega_1(s) + \varepsilon_1(s,t)$$

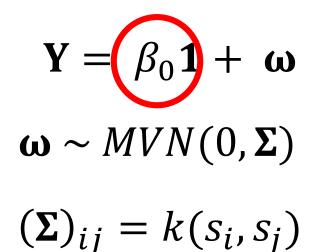
$$p_2(s,t) = \beta_2(t) + \omega_2(s) + \varepsilon_2(s,t)$$



The bias is there for a reason

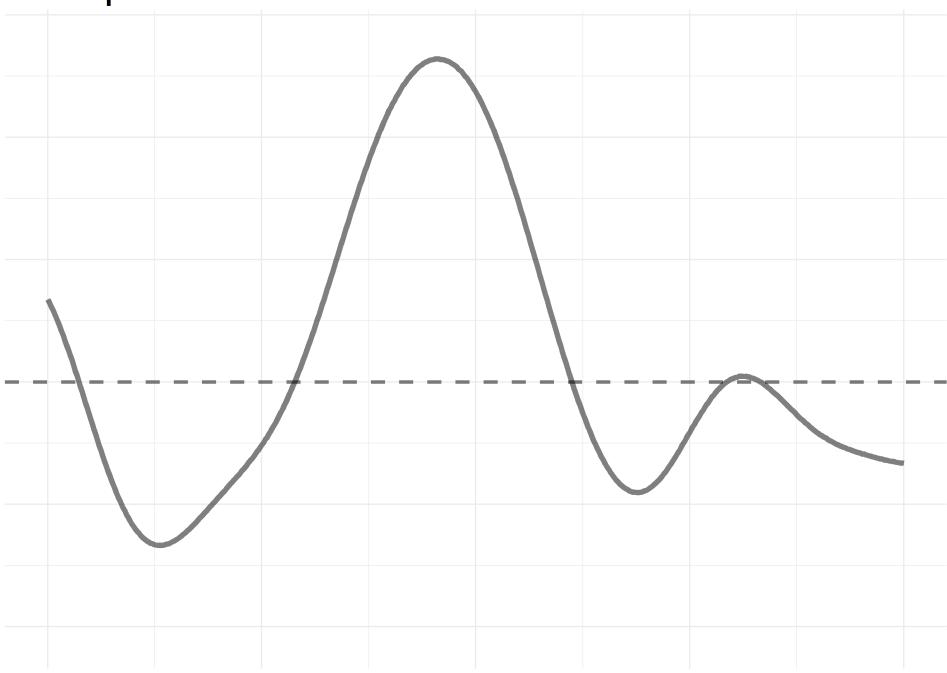
 $\mathbf{Y} = \beta_0 \mathbf{1} + \boldsymbol{\omega}$ $\boldsymbol{\omega} \sim MVN(0, \boldsymbol{\Sigma})$ $(\boldsymbol{\Sigma})_{ij} = k(s_i, s_j)$

The bias is there for a reason

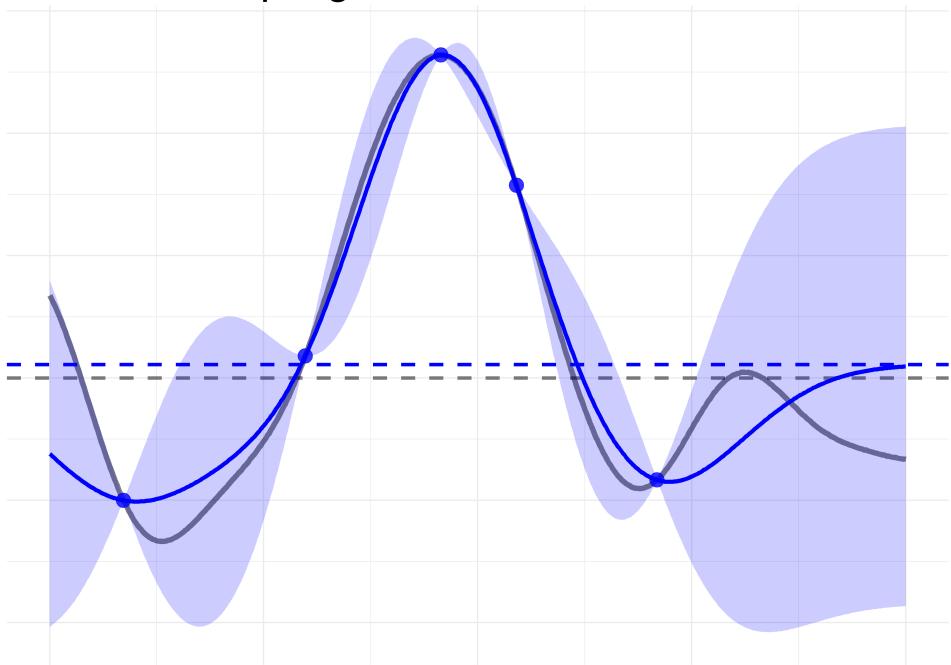


True process

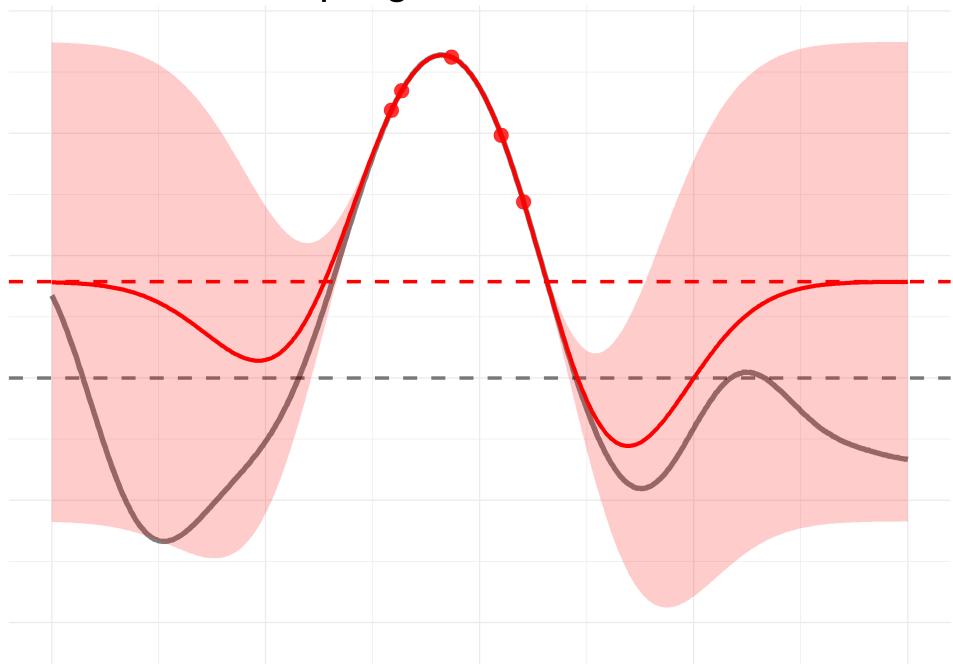
True process



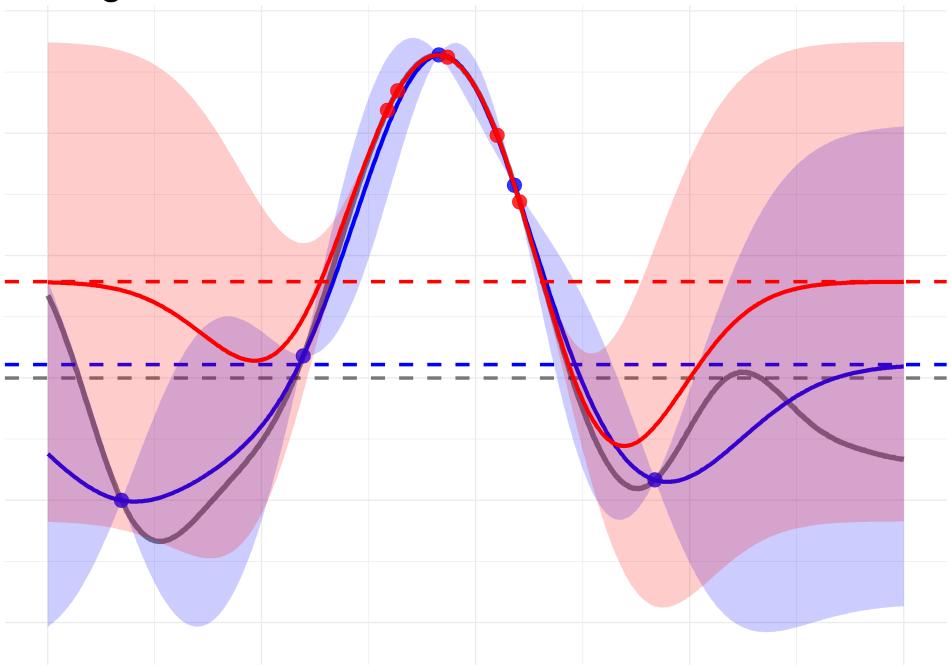
Random sampling



Preferential sampling



All together now



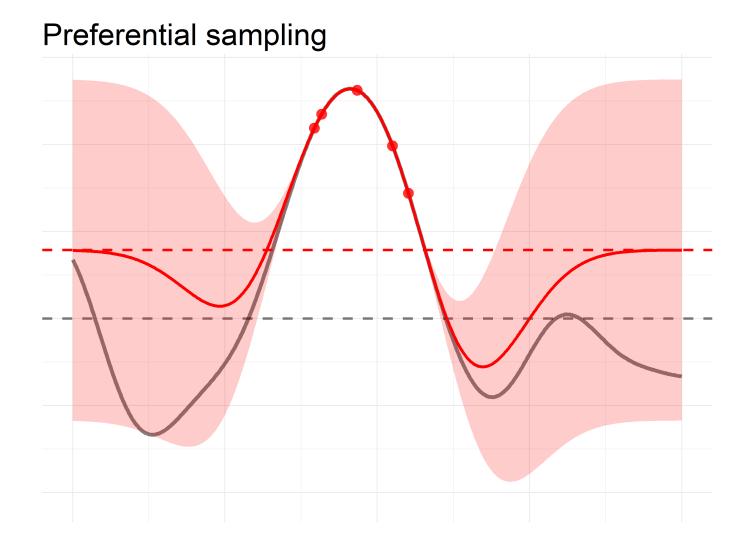
There's a lot left to do

$$\log(\text{CPUE}_{s}) = \boldsymbol{\mu}_{s} + \boldsymbol{\omega}_{d} + \boldsymbol{\epsilon}_{s}$$
$$\log(\text{CPUE}_{f}) = \boldsymbol{\mu}_{f} + \boldsymbol{\omega}_{d} + \boldsymbol{\omega}_{q} + \boldsymbol{\epsilon}_{f}$$

There's a lot left to do

$$\log(\text{CPUE}_{s}) = \boldsymbol{\mu}_{s} + \boldsymbol{\omega}_{d}$$
$$\log(\text{CPUE}_{f}) = \boldsymbol{\mu}_{f} + \boldsymbol{\omega}_{d} + \boldsymbol{\omega}_{q}$$

There's a lot left to do



Acknowledgements

- Jim Thorson
- Andre Punt
- Rick Methot

Quantitative Ecology & Resource Management University of Washington

