Fishery-dependent data in a spatio-temporal context

John Best

University of Washington

There's a lot more information in fishery data

Spatial structure can be induced through movement

Spatial structure can be induced through movement

Spatial structure can be induced through movement

Example abundance map

Targeting varies by fleet

Targeting varies by fleet

Targeting varies by fleet

Schaefer population dynamics

$$p_{s,t+1} = p_{s,t} + rp_{s,t} \left(1 - \frac{\sum_{s} p_{s,t}}{K_t} \right)$$

$$K_t \sim \text{LogNormal}\left(\log(\overline{K}) - \frac{0.1^2}{2}, 0.1^2\right)$$

VAST makes model fitting easy

$$r_{1}(s,t) = 1 - \exp([1 - a_{i} \exp(p_{1}(s,t)]))$$
$$Pr(C_{s,t} > 0) = r_{1}(s,t)$$
$$r_{2}(s,t) = \frac{a_{i} \exp(p_{1}(s,t))}{r_{1}(s,t)} \exp(p_{2}(s,t))$$

 $C_{s,t} \mid C_{s,t} > 0 \sim \text{LogNormal}(r_2(s,t),\sigma^2)$

VAST makes model fitting easy

$$p_1(s,t) = \beta_1(t) + \omega_1(s) + \varepsilon_1(s,t)$$

$$p_2(s,t) = \beta_2(t) + \omega_2(s) + \varepsilon_2(s,t)$$

The bias is there for a reason

 $\mathbf{Y} = \beta_0 \mathbf{1} + \boldsymbol{\omega}$ $\boldsymbol{\omega} \sim MVN(0, \boldsymbol{\Sigma})$ $(\boldsymbol{\Sigma})_{ij} = k(s_i, s_j)$

The bias is there for a reason

True process

True process

Random sampling

Preferential sampling

All together now

There's a lot left to do

$$\log(\text{CPUE}_{s}) = \boldsymbol{\mu}_{s} + \boldsymbol{\omega}_{d} + \boldsymbol{\epsilon}_{s}$$
$$\log(\text{CPUE}_{f}) = \boldsymbol{\mu}_{f} + \boldsymbol{\omega}_{d} + \boldsymbol{\omega}_{q} + \boldsymbol{\epsilon}_{f}$$

There's a lot left to do

$$\log(\text{CPUE}_{s}) = \boldsymbol{\mu}_{s} + \boldsymbol{\omega}_{d}$$
$$\log(\text{CPUE}_{f}) = \boldsymbol{\mu}_{f} + \boldsymbol{\omega}_{d} + \boldsymbol{\omega}_{q}$$

There's a lot left to do

Acknowledgements

- Jim Thorson
- Andre Punt
- Rick Methot

Quantitative Ecology & Resource Management University of Washington

