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● Fisheries management decisions in New Zealand are based on stock assessment 
models where inferences are typically carried out using a Bayesian approach 

● The choice of priors on model parameters tends to be made based on the 
biological meanings of individual parameters (e.g., log-normal distributions on 
positive parameters)

● Thorson and Cope (2017) pointed out a problem of placing a uniform prior on a 
scale parameter in the context of the model

● Using independent priors for individual parameters can potentially drive stock 
assessment models to implausible spaces (e.g., negative biomass) 

● Walters et al. (2006) and Froese et al. (2017) used Monte Carlo simulations to 
derive plausible ranges of parameters, based on domain knowledge (e.g., non-
negative biomass)

Introduction
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Introduction (simple example for PPCs)
Priors Catch

Draw samples Draw samples

Input Input

• Doing this process with many prior samples, 

and check if the predictive biomass 

trajectories are in the plausible space (i.e., 

𝐵𝑡 > 0). 

• This simple process shows that independent 

priors on individual parameters may have 

different implications for the model outcome

Output

Implausible space



Introduction
Bayesian workflow from Gelman et al., 2020

● Prior predictive checks are used to see 
how credible your assumptions are in 
terms of model outcomes.

● This simulation-based diagnostics 
allow you to understand the 
implications of a prior distribution in 
the context of a generative model 

● Prior predictive checks are the crucial 
part of the Bayesian workflow (see the 
flowchart).



The key points of this talk are…

● To show that Bayesian stock assessment models are no exceptions to the 
necessity of prior predictive checks. 

● To demonstrate that assuming independent priors, where each marginal prior 
contains true information on individual parameters, can potentially drive stock 
assessment models to a priori implausible spaces, leading to biased inferences 
for key model parameters. 

● To show that considering a single joint prior derived from priors over model 
inputs and outputs in terms of plausible ranges of model outcomes (e.g., non-
negative values for stock biomass) is a necessary step in Bayesian stock 
assessments in order to eliminate this bias.

We performed simulation experiments to support the points 
above, using the logistic production and age-structured models.



Logistic 
Production Model



Logistic Production Model in a Bayesian setting

Logistic production model

Priors

Input values (from Polacheck et al. 1993)

Namibian Hake



Simulation process for prior predictive checks

1. Draw a sample of r and K from their priors (i.e., 

the Log-Normal priors in our model) 

2. Predict annual biomass 𝐵𝑡, using the samples 

drawn from 1 as inputs of the model

3. Then, check if 𝐵𝑡 outside plausible bounds (e.g.,  

𝐵𝑡 > 0)

4. Repeat 1-2 10 000 times to obtain a prior 

predictive space of 𝐵𝑡



Examining the prior predictive space

● Some pairs of samples predicted the extinction of the 

population (𝐵𝑡 ≤ 0), but we know that the population 

still exists (i.e., domain knowledge).

● Because of those problematic samples (i.e., red in the 

plot),  an effective space of each prior (blue) becomes 

different from its original form (white).

● To develop a joint prior that predicts the biomass in 

the plausible space (𝐵𝑡 > 0),  we need to find a 

relationship between r and K.

𝐵𝑡 ≤ 0 (red) vs. 𝐵𝑡 > 0 (blue)



Examining the prior predictive space

Prior predictive space of the last year biomass

𝐵𝑡 = 0

• Green vertical line: true biomass

• Black vertical line:  the median of the predictive space, 

excluding the first bar of the histogram



Examining the prior predictive space

Prior predictive space of the last year stock status

𝐵𝑡/𝐾 = 0

• Green vertical line: true biomass

• Black vertical line:  the median of the predictive space, 

excluding the first bar of the histogram



Steps to develop a joint (correlated) prior 
from a sampling and resampling process

1. Draw 10 000 samples of r and K from the Log-Normal priors 

2. Predict annual biomass, using the samples as inputs of the model

3. Remove a pair of r and K samples which drive the biomass to extinction

4. Calculate a covariance matrix for log(r) and log(K), using the remaining samples

5. Redraw 10 000 samples of r and K from a MVN distribution to incorporate the 

covariance structure

6. Repeat 2-5 until over 99% of samples predict 



Priors developed from the resampling technique
Marginal distributions of all 

sequentially updated priors

The original independent priors (black) 

vs. the final correlated prior (purple) 



Priors developed from the resampling technique



Priors developed from the resampling technique



Simulated population and data Parametric bootstrap test

1. Simulate data (i.e., CPUE) given the input 
values and the model

2. Fit the full Bayesian model to simulated 
data, using Stan

3. Check model convergence (i.e., no 
divergent transitions and Rhat <1.05)

4. Calculate a relative bias of the estimates 
of the parameters (i.e., the median of the 
posterior)

5. repeat 1-4 200 times

Simulation experiment (procedure)



Simulation experiment (results)

Impact of priors on parameter estimation with correlation (dark green) vs. without 

correlation (brown)



Age-structured 
Model



Age-structured Model in a Bayesian setting
Process equation

Observation equation (abundance index)

Observation equation (age composition; 

see Thorson et al., 2017)



Age-structured Model in a Bayesian setting

Input values (from Forrest et al., 2008)Priors

And other model parameters 

(e.g., Maturity, selectivity, size, etc.) are fixed at their 

true values obtained from Forrest et al., 2008

Namibian Hake

(Catch data)



Simulation process for prior predictive checks

1. Draw a sample of 𝛼, 𝛽 and M from their priors 

(i.e., the Log-Normal priors in our model) 

2. Predict annual biomass 𝐵𝑡, using the samples 

drawn from 1 as inputs of the model

3. Then, check if 𝐵𝑡 outside plausible bounds (e.g.,  

𝐵𝑡 > 0)

4. Repeat 1-2 10 000 times to obtain a prior 

predictive space of 𝐵𝑡



Examining the prior predictive space

Prior predictive space of the last year biomass



Priors developed from the resampling technique
The original independent priors (black) 

vs. the final correlated prior (purple) 
In terms of h and R0



Priors developed from the resampling technique



Simulated population and data Parametric bootstrap test

1. Simulate data (i.e., CPUE and age composition) 
given the input values and the model

2. Fit the full Bayesian model to simulated data 
(Scenario 1: only CPUE;  Scenario 2: both CPUE 
and age composition), using Stan

3. Check model convergence (i.e., no divergent 
transitions and Rhat <1.05)

4. Calculate a relative bias of the estimates of the 
parameters (i.e., the median of the posterior)

5. repeat 1-4 100 times

Simulation experiment (procedure)

Age composition data



Simulation experiment 
(results for scenario 1: only CPUE)
Impact of priors on parameter estimation with correlation (dark green) vs. without 

correlation (brown)



Simulation experiment 
(results for scenario 2: both CPUE and age composition)
Impact of priors on parameter estimation with correlation (dark green) vs. without 

correlation (brown)



● As mentioned in Kennedy et al. (2019),  we showed that a poor choice of priors in terms of model 

outcomes can cause underpowered/biased inferences. 

● As Gelman et al. (2017) pointed out,  priors should only be interpreted in terms of the likelihood. For 

example, in the likelihood of the two stock assessment models we used, the biomass was log-

transformed (i.e., log(𝐵𝑡)~𝑁 log(𝑞𝐵𝑡 , 𝜎𝑜
2));  thus, samples, drawn from the independent priors, which 

predicted 𝐵𝑡 ≤ 0 were not defined in the models.

● As a baseline setting in our simulation studies, we used informative priors, all of which are correctly 

placed on individual parameters.  We note that this simulation setting made the results (relative bias of 

the estimates) seem less dramatic, but tells us that a prior conflict even occurs in such an ideal 

situation.

Discussion



● We showed that even using the informative priors, even while centered on the true values of the 

parameters, can cause biased estimates, especially for the scale parameters (i.e., catchability q 

and the carrying capacity K) if the priors are not interpreted in terms of the model outcomes.

● We suggest Bayesian stock assessment models should use prior predictive checks and prior 

pooling to minimise prior conflict and potential bias in posterior inferences caused by marginal 

prior choices. 

● The iterative resampling procedure allows for pooling of priors over inputs and outputs (e.g., Poole 

& Raftery 2000), ensuring that Bayesian inference remains well defined, and can be implemented 

with MCMC assuming a parametric form of the joint prior. 

Discussion



Good with data

Thank you for 
your attention





Additional slides



Logistic 
Production Model 
(reparameterised)



Logistic Production Model (reparameterised)

Model structure Input values (from Polacheck et al. 1993)

Priors



Steps to develop a correlated prior from a 
sampling and resampling process

1. Draw 10 000 samples of r, K, and q from the Log-Normal priors 

2. Predict annual biomass, using the samples as inputs of the model

3. Remove a set of r, K, and q samples which predict the implausibly low stock status in the 

last year

4. Calculate a covariance matrix for log(r), log(K) and log(q), using the remaining samples

5. Redraw 10 000 samples of r, K, and q from a MVN distribution to incorporate the 

covariance structure

6. Repeat 2-5 until over 99% of samples predict 



Priors developed from the resampling technique



Priors developed from the resampling technique



Simulated population and data Parametric bootstrap test

1. Simulate data (i.e., Catch) given the input 
values and the model

2. Fit the full Bayesian model to simulated 
data (scenario 1: all data points; scenario 
2: last 10 data points), using Stan

3. Check model convergence (i.e., no 
divergent transitions and Rhat <1.05)

4. Calculate a relative bias of the estimates 
of the parameters (i.e., the median of the 
posterior)

5. repeat 1-4 200 times

Simulation experiment (procedure)



Simulation experiment (results)

Scenario 1: fitted to all data points Scenario 2: fitted to the last 10 data points



Uniform prior on log(q) instead of the Log-Normal prior 


