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Introduction

e Fisheries management decisions in New Zealand are based on stock assessment
models where inferences are typically carried out using a Bayesian approach

e The choice of priors on model parameters tends to be made based on the
biological meanings of individual parameters (e.g., log-normal distributions on
positive parameters)

e Thorson and Cope (2017) pointed out a problem of placing a uniform prior on a
scale parameter in the context of the model

e Using independent priors for individual parameters can potentially drive stock
assessment models to implausible spaces (e.g., negative biomass)

e Walters et al. (2006) and Froese et al. (2017) used Monte Carlo simulations to
derive plausible ranges of parameters, based on domain knowledge (e.g., non-
| negative biomass) N
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Introduction (simple example for PPCs)
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Doing this process with many prior samples,
and check if the predictive biomass
trajectories are in the plausible space (i.e.,
B; > 0).

This simple process shows that independent
priors on individual parameters may have
different implications for the model outcome
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Introduction

Prior predictive checks are used to see
how credible your assumptions are in
terms of model outcomes.

This simulation-based diagnostics
allow you to understand the
implications of a prior distribution in
the context of a generative model

Prior predictive checks are the crucial
part of the Bayesian workflow (see the
flowchart).
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The key points of this talk are...

e Toshow that Bayesian stock assessment models are no exceptions to the
necessity of prior predictive checks.

e To demonstrate that assuming independent priors, where each marginal prior
contains true information on individual parameters, can potentially drive stock
assessment models to a priori implausible spaces, leading to biased inferences
for key model parameters.

e Toshow that considering a single joint prior derived from priors over model
inputs and outputs in terms of plausible ranges of model outcomes (e.g., non-
negative values for stock biomass) is a necessary step in Bayesian stock
assessments in order to eliminate this bias.

We performed simulation experiments to support the points
above, using the logistic production and age-structured models.
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Logistic Production Model in a Bayesian setting

Logistic production model

By =K
By

By =Bt+T'Bt'(1—f)—Ct

I, =q-By-et, where etiri\(}N(O,az)

Priors

r ~ Log-Normal(log(0.379),0.294%); CV = 0.3
K ~ Log-Normal(log(2772.6),0.472%); CV = 0.5
¢ ~ Log-Normal(log(0.0006),0.833%); CV =1
)

o ~ Log-Normal(log(0.3),0.833%); CV =1

Catch (MT in 10%)

Input values (from Polacheck et al. 1993)
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Simulation process for prior predictive checks

1. Draw a sample of rand K from their priors (i.e.,
the Log-Normal priors in our model)

2. Predict annual biomass By, using the samples
drawn from 1 as inputs of the model

3. Then, check if B, outside plausible bounds (e.g.,
B; > 0)

/. Repeat 1-2 10 000 times to obtain a prior

predictive space of B;

B; <0 (red)vs. B, > 0 (blue)

10001

Count

2000
= 15001
3 10001

500

0.0

1.0

0 5000 10000 15000

20000

1965 1970 1975 1980

1985

1990

B



Examining the prior predictive space

Some pairs of samples predicted the extinction of the
population (B; < 0), but we know that the population

still exists (i.e., domain knowledge).

Because of those problematic samples (i.e., red in the
plot), an effective space of each prior (blue) becomes

different from its original form (white).

To develop a joint prior that predicts the biomass in
the plausible space (B, > 0), we need to find a

relationship between r and K.
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Prior predictive space of the last year biomass

Green vertical line: true biomass
Black vertical line: the median of the predictive space,

excluding the first bar of the histogram

Prior (update:0)

Examining the prior predictive space
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Count

Examining the prior predictive space

B, <0 (red)vs. B, > 0 (blue)

Prior predictive space of the last year stock status

Green vertical line: true biomass
Black vertical line: the median of the predictive space,

excluding the first bar of the histogram
Prior (update:0)
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Steps to develop a joint (correlated) prior
from a sampling and resampling process

Draw 10 000 samples of r and K from the Log-Normal priors
Predict annual biomass, using the samples as inputs of the model
Remove a pair of r and K samples which drive the biomass to extinction (i.e., B; <0)

Calculate a covariance matrix for log(r) and log(K), using the remaining samples

ok W Dd PR

Redraw 10 000 samples of r and K from a MVN distribution to incorporate the
covariance structure

6. Repeat 2-5 until over 99% of samples predict B; > (
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Marginal distributions of all
sequentially updated priors

Density

Priors developed from the resampling technique
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Priors developed from the resampling technique

Prior (update:0) Prior (update:0)
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Priors developed from the resampling technique

Prior (update:0)
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Simulation experiment (procedure)

Parametric bootstrap test

Simulated population and data

1. Simulate data (i.e., CPUE) given the input
values and the model

— 400+

2. Fit the full Bayesian model to simulated
data, using Stan

3
) Cateh (MT in 10%)
S 3
o o

3. Check model convergence (i.e., no
divergent transitions and Rhat <1.05)

Biomass (MT in 10

4. Calculate a relative bias of the estimates
of the parameters (i.e., the median of the
posterior)

5. repeat 1-4 200 times




Relative bias

Simulation experiment (results)
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Age-structured
Model
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Age-structured Model in a Bayesian setting

Process equation

For t = 1.

Nai =4 Ny—11-e M,

f
RO 9
M

Na_11-e M

\ 1—e M ’

Fort > 1,
(o Egg, 4
1+5-Beg
Na,t = 4

\

fora=1
for2<a< A
fora=A

No—1g-1 ¢ M (1 —v4_q-Up_y),

No1g-1-e ™M (1—vaq-Ui1)
+Nat1-e M- (1=, -Upy),

fora=1
for2<a< A
fora= A

Observation equation (abundance index)

I, =q-B; - et Stifi\(le(0,0'g),
A

where Bt:Zwa Vg * Nt
a=1

Observation equation (age composition;

see Thorson et al., 2017)

n, ~ Dirichlet-multinomial(n;"™", ~,, P,).

.
where v, = 0 - n"*" - P,

a,t
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T
Age-structured Model in a Bayesian setting

Input values (from Forrest et al., 2008)

o =5.941; 5 =0.00628; M =0.35
o2 =0.3% 0 =0.05; ¢=0.0006

And other model parameters
M ~ Log-Normal(log(0.35),0.198%); CV = 0.2 (e.g., Maturity, selectivity, size, etc.) are fixed at their
true values obtained from Forrest et al., 2008

600

o ~ Log-Normal(log(5.941),0.472%); CV = 0.5

3 ~ Log-Normal(log(0.00628), 0.472%); CV = 0.5

o2 ~ Log-Normal(log(0.3%),0.833%); CV =1
f ~ Log-Normal(log(0.05),0.833%); CV =1
¢ ~ Log-Normal(log(0.0006),0.833%); CV =1
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Simulation process for prior predictive checks

1. Draw asample of a, # and M from their priors
(i.e., the Log-Normal priors in our model)
Predict annual biomass B;, using the samples
drawn from 1 as inputs of the model

Then, check if B; outside plausible bounds (e.g.,
B, > 0)

Repeat 1-2 10 000 times to obtain a prior

predictive space of B;

B; <0 (red)vs. B, > 0 (blue)
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Count

Examining the prior predictive space

Prior predictive space of the last year biomass

Prior (update:0)
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The original independent priors (black)

vs. the final correlated prior (purple)
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Priors developed from the resampling technique
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Simulation experiment (procedure)

Parametric bootstrap test Simulated population and data

1. Simulate data (i.e., CPUE and age composition)
given the input values and the model

Catch (MT in 10°)
N B O
o O O
o o o

2. Fit the full Bayesian model to simulated data e
(Scenario 1: only CPUE; Scenario 2: both CPUE g
and age composition), using Stan 0

3. Check model convergence (i.e., no divergent
transitions and Rhat <1.05)
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. Calculate a relative bias of the estimates of the
parameters (i.e., the median of the posterior)

5. repeat 1-4 100 times I

Age composition data
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Simulation experiment
(results for scenario 1: only CPUE)

Impact of priors on parameter estimation with correlation (dark green) vs. without
correlation (brown)
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Simulation experiment
(results for scenario 2: both CPUE and age composition)

Impact of priors on parameter estimation with correlation (dark green) vs. without
correlation (brown)
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Discussion

e As mentioned in Kennedy et al. (2019), we showed that a poor choice of priors in terms of model

outcomes can cause underpowered/biased inferences.

e AsGelman etal. (2017) pointed out, priors should only be interpreted in terms of the likelihood. For
example, in the likelihood of the two stock assessment models we used, the biomass was log-
transformed (i.e., log(B;)~N(log(gB,),c?)); thus, samples, drawn from the independent priors, which

predicted B; < 0 were not defined in the models.

® Asabaseline setting in our simulation studies, we used informative priors, all of which are correctly
placed on individual parameters. We note that this simulation setting made the results (relative bias of

the estimates) seem less dramatic, but tells us that a prior conflict even occurs in such an ideal

situation. 4



I
Discussion

e We showed that even using the informative priors, even while centered on the true values of the
parameters, can cause biased estimates, especially for the scale parameters (i.e., catchability g

and the carrying capacity K) if the priors are not interpreted in terms of the model outcomes.

e We suggest Bayesian stock assessment models should use prior predictive checks and prior
pooling to minimise prior conflict and potential bias in posterior inferences caused by marginal

prior choices.

e The iterative resampling procedure allows for pooling of priors over inputs and outputs (e.g., Poole
& Raftery 2000), ensuring that Bayesian inference remains well defined, and can be implemented

with MCMC assuming a parametric form of the joint prior.

2



Thank you for
your attention

[

DRAG 9thF LY Good with data



2



Additional slides

Data Science
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(reparameterised)

B



Logistic Production Model (reparameterised)

Model structure Input values (from Polacheck et al. 1993)

B, =K r=0.379; K =2772.6
— . 2 __ 2
{Bt+1 = 'Bt +7r- By - (1 — %)} e~ E q = 0.0006, oo = 0.3
Ey = Ct/It

Ct = [Bt “+7r- Bt . (1 — %>] . (]_ — e_q'Et) . eft’
K .
..
where g, < N(0,0?)

r ~ Log-Normal(log(0.379),0.294%); CV = 0.3
K ~ Log-Normal(log(2772.6),0.472%); CV = 0.5
¢ ~ Log-Normal(log(0.0006),0.833%); CV =1
o2 ~ Log-Normal(log(0.3%),0.833%); CV =1
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Steps to develop a correlated prior from a
sampling and resampling process

1. Draw 10 000 samples of r, K, and g from the Log-Normal priors

2. Predict annual biomass, using the samples as inputs of the model

3. Remove a set of r, K, and g samples which predict the implausibly low stock status in the
last year (i.e., remove those that predict Biggs/K < 0.05)

4. Calculate a covariance matrix for log(r), log(K) and log(qg), using the remaining samples

5. Redraw 10 000 samples of r, K, and g from a MVN distribution to incorporate the
covariance structure

6. Repeat 2-5 until over 99% of samples predict Bigss/K > 0.05
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Priors developed from the resampling technique

Prior (update:0) Prior (update:0)
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Priors developed from the resampling technique
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Simulation experiment (procedure)

Parametric bootstrap test Simulated population and data
1. Simulate data (i.e., Catch) given the input -
values and the model £ s00] /\/__/w\*v\’\(
£ 2501

2. Fit the full Bayesian model to simulated 1965 1970 1975 1980 1985
data (scenario 1: all data points; scenario
2: last 10 data points), using Stan

3. Check model convergence (i.e., no
divergent transitions and Rhat <1.05)

1965 1970 1975 1980 1985 1990
Year

A. Calculate a relative bias of the estimates
of the parameters (i.e., the median of the
posterior)

1965 1970 1975 1980 1985
Year

5. repeat 1-4 200 times




Simulation experiment (results)

Scenario 1: fitted to all data points Scenario 2: fitted to the last 10 data points
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I I I I I CCrTRRm
Uniform prior on log(q) instead of the Log-Normal prior

log(q) ~ Uniform[log(10~?),log(1072)]
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