Development of a size-structured spatiotemporal model for invertebrates

Jie Cao, James T. Thorson, André Punt, Cody Szuwalski

CAPAM, La Jolla Feb. 28, 2018

Spatial scale

The problem of scale is the central problem in ecology

- Pattern & Process
- Statistical relationship
- Characteristic scale

Population dynamic & stock assessment

- Spatial homogeneity
- Tracking total abundance across the entire stock
 - Survey counts/catches are aggregated spatially
- Consequences of ignoring spatial structure
 - Degrading stock assessment performance
 - Leading to overexploitation of weaker population units
 - Ineffective recovery plans

Spatial structured stock assessments

Incorporating Spatial Structure in Stock Assessment: Movement Modeling in Marine Fish Population Dynamics

DANIEL R. GOETHEL,¹ TERRAWhich assessment configurations perform best in the face of spatial¹School for Marine Science and Technologyheterogeneity in fishing mortality, growth and recruitment? A case¹School of Fisheries and Ocestudy based on pink ling in Australia

```
André E. Punt<sup>a,b,*</sup>, Malcolm Haddon<sup>b</sup>, Geoffrey N. Tuck<sup>b</sup>
```

Journal of Animal Ecology 2017, 86, 888-898

doi: 10.1111/1365-2656.12678

Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models

Lauren A. Rogers^{*,1,2}, Geir O. Storvik³, Halvor Knutsen^{1,4,5}, Esben M. Olsen^{1,4,5} and Nils C. Stenseth^{1,4,5}

Spatial structured stock assessments

- Spatial strata
 - few sub-stocks with connectivity
- Increasing the # of spatial strata?
 - very little data for each stratum
 - difficulties of estimating movement rates
 - Linkage among strata

Objectives

Developing a spatiotemporal population model

- fine spatial scale
- geostatistical approach
- size-structured

- spatial variation
 - density
 - fishing mortality
 - catch
- \clubsuit better interpret population dynamic
- \clubsuit improve spatial management

Spatiotemporal population model

- Combines theory and methods from population dynamics and geostatistics
- Assume population density varies continuously across space

$$x(s_i) \sim N\left(\frac{1}{|n_i|} \sum_{j \in n_i} x(s_j), \sigma^2\right)$$

- Joint distribution for density at all locations
- Expand to account for size-structured population dynamics

Gaussian Markov random field (GMRF)

- Continuous spatial process -> discretely indexed GMRF
- Matérn covariance function
- Mesh/knot

Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. *ICES Journal of Marine Science*, 72(5), pp.1297-1310.

Why size-structured models?

- Advantages:
 - Requires no ability to age animals (shrimps, crabs, lobsters)
 - Uses the data actually available
 - Vulnerability / maturity are often functions of size and not age

Abundance at size (n) for a given location s and time t

 $\boldsymbol{n}_{s,t+1} = f(\boldsymbol{n}_{s,t}) \circ e^{\boldsymbol{\varepsilon}_{s,t}}$

 $\boldsymbol{\Sigma}_t \sim \text{MVN}(0, \mathbf{R}_{spatial} \otimes \boldsymbol{\Theta}_L)$

$$f(\mathbf{n}_{s,t}^{\text{male}}) = \begin{cases} \mathbf{r}_{s,t} * p_{\text{male}} + \mathbf{G}(\mathbf{n}_{s,t-1}^{\text{immat}} e^{-\mathbf{m}_{s,t-1} - \mathbf{v} * f_{s,t-1}^{\text{male}}}) * (1 - \mathbf{w}), & \mathbf{n} = \mathbf{n}^{\text{immat}} \\ \mathbf{G}(\mathbf{n}_{s,t-1}^{\text{immat}} e^{-\mathbf{m}_{s,t-1} - \mathbf{v} * f_{s,t-1}^{\text{male}}}) * \mathbf{w} + \mathbf{n}_{s,t-1}^{\text{mat}} e^{-\mathbf{m}_{s,t-1} - \mathbf{v} * f_{s,t-1}^{\text{male}}}, & \mathbf{n} = \mathbf{n}^{\text{immat}} \end{cases}$$

$$f(\mathbf{n}_{s,t}^{\text{female}}) = \begin{cases} \mathbf{r}_{s,t} * p_{\text{female}} + \mathbf{G}(\mathbf{n}_{s,t-1}^{\text{immat}}e^{-\mathbf{m}_{s,t-1}}) * (1-\mathbf{w}), & \mathbf{n} = \mathbf{n}^{\text{immat}} \\ \mathbf{G}(\mathbf{n}_{s,t-1}^{\text{immat}}e^{-\mathbf{m}_{s,t-1}}) * \mathbf{w} + \mathbf{n}_{s,t-1}^{\text{mat}}e^{-\mathbf{m}_{s,t-1}}, & \mathbf{n} = \mathbf{n}^{\text{mat}} \end{cases}$$

 $\boldsymbol{r}_{L,t} \sim \text{MVN}(r_{\mu}, \mathbf{R}_{spatial})$

$$\boldsymbol{c}_{s,t} = \left(1 - e^{-\boldsymbol{\nu} * f_{s,t}^{\text{male}}}\right) * \boldsymbol{n}_{s,t} e^{-\boldsymbol{m}_{s,t}}$$

 $\boldsymbol{n}_{s,t+1} = f(\boldsymbol{n}_{s,t}) \circ e^{\boldsymbol{\varepsilon}_{s,t}}$

 $\Sigma_t \sim \text{MVN}(0, \mathbf{R}_{spatial} \otimes \Theta_L)$

- $\boldsymbol{n}_{s,t}$ vector of abundances for each of *l* size classes
- f() function representing population dynamic
- $\boldsymbol{\varepsilon}_{s,t}$ vector of random effects (process error)
- Θ_L covariance among size classes (*l* by *l* matrix **L**)
- **R**_{spatial} spatial covariance matrix (covariance between 2 locations follows a Matern function)

- Hadamard product (entrywise product)
- location
- year

0

S

t

 \otimes Kronecker product

Imagine 100 knots and 30 size classes !

$f(\mathbf{n}_{s,t})$ - population dynamic

Snow crab

- Male/Female
- Only males are retained in the fishery
- Split into maturity state
- Mature individuals do not molt

Population dynamic (*f*())

$$f(\mathbf{n}_{s,t}^{\text{male}}) = \begin{cases} \mathbf{r}_{s,t} * p_{\text{male}} + \mathbf{G}(\mathbf{n}_{s,t-1}^{\text{immat}} e^{-\mathbf{m}_{s,t-1} - \mathbf{v} * f_{s,t-1}^{\text{male}}}) * (1 - \mathbf{w}), & \mathbf{n} = \mathbf{n}^{\text{immat}} \\ \mathbf{G}(\mathbf{n}_{s,t-1}^{\text{immat}} e^{-\mathbf{m}_{s,t-1} - \mathbf{v} * f_{s,t-1}^{\text{male}}}) * \mathbf{w} + \mathbf{n}_{s,t-1}^{\text{mat}} e^{-\mathbf{m}_{s,t-1} - \mathbf{v} * f_{s,t-1}^{\text{male}}}, & \mathbf{n} = \mathbf{n}^{\text{immat}} \end{cases}$$

$\boldsymbol{r}_{s,t}$	vector of recruitment for each of l size classes
$p_{ m male}$	proportion of male recruitment
G	growth transition matrix
$\boldsymbol{m}_{s,t}$	vector of natural mortality at location s, year t
$f_{s,t}^{male}$	fishing mortality at location s, year t
V	vector of selectivity at size
$\boldsymbol{n}_{s,t}^{ ext{immat}}$	vector of immature abundance for each of l size classes
$\boldsymbol{n}_{s,t}^{ ext{mat}}$	vector of mature abundance for each of l size classes
W	vector of maturity of each size class

Population dynamic - *parameters*

Recruitment

 $\boldsymbol{r}_{s,t} = r^u_{s,t} * \boldsymbol{l}_{size}$

 $r_{s,t}$ l_{size} $r_{s,t}^{u}$ vector of recruitment for each of p size classes
vector of proportion of recruitment
recruitment at location *s* and year *t*

 \mathbf{r}_t^u follows a spatial process $\sim MVN(\boldsymbol{\mu}_r, \mathbf{Q}_r^{-1})$

Growth transition matrix (G) and natural mortality (m) – input data

Summary of parameters

Fixed effects

Random effects

Θ_L	process error covariance (among size classes
к	geostatistical range for correlations
μ_t	average offset of annual recruitment
arphi	initial abundance of each size class
S	parameters of selectivity (logistic)
	Parameters of observation model

- \mathbf{r}_t^u spatial variation in recruitment
- nt spatial variation in density for each size class and year
- f fishing mortality of location s over time

treat density as random, rather than process errors $(\underline{\mathcal{E}_t})$

Input data

survey data

Size_class	Year	Catch_N	AreaSwept_km2	Vessel	Lat	Lon
1	1	553	3.1	0	60	-174
1	1	629	3.1	0	63.5	-172
1	1	575	3.1	0	58	-170
1	1	618	3.1	0	61.5	-178
1	1	625	3.1	0	64.5	-170
1	1	634	3.1	0	61	-172

• used to create mesh/knots

commercial catch data

x	lat	lon	year	X.1	X.2	X.3	X.4	X.5
1	55.6	-169	1	0.802	2.82	2.32	3.18	7.18
2	56.3	-170	1	0.657	1.83	1.54	2.15	4.94
3	56.3	-170	1	0.662	1.82	1.54	2.16	4.96
4	56.2	-171	1	0.64	1.78	1.5	2.1	4.81
5	56.2	-170	1	0.645	1.8	1.51	2.12	4.85
6	56.2	-170	1	0.646	1.82	1.52	2.13	4.88

- fine scale
- aggregated to knot-level

Model outputs

- Predicted population density map
- Estimated fishing mortality map
- Predicted catch map
- Estimated covariance of process error

Estimation

- SPDE MVN
- Piecewise constant
- Catch lognormal
- Survey lognormal/Poisson-link

Template Model Builder (TMB)

Operating model – overview

- Dynamics occur at fine scale
- Population dynamics (non-spatial) formulated identically to EM
- Cell-specific parameters (spatially correlated)
- No movement
- Annual time step

Operating model – recruitment

- 1. Draw average annual recruitments (μ_t) from a Poisson distribution
- 2. Define spatial variance and scale (σ_t^2, κ_t) for each year model_R <- RMgauss (σ_t^2, κ_t)
- 3. Simulate a Gaussian random field for each year on the grid (ε_t) $\varepsilon_t <- RFsimulate(model = smodel_R, x=loc_x[,1], y=loc_x[,2])$
- 4. Calculate recruitment of each cell *s* and year *t*, $R_{s,t} = \mu_t e^{\varepsilon_t}$
- 5. Allocate recruitment $R_{s,t}$ to each size class

Operating model – recruitment examples

# of size classes (population):	n_p = 5
# of years:	$n_t = 10$
# of size bins (recruitment):	n $r = 1$

Operating model – fishing mortality

- Similar way as simulating recruitment $(f_{s,t} = f_t e^{\varepsilon_t})$
- Selectivity (*s*) Logistic function (2 parameters)
- Fishing mortality $f_{p,s,t} = f_{s,t} v_l$
- Flexibility in f_t and ε_t
- Different parameterization in EM

Operating model – growth

- EM uses growth transition matrix (GTM) directly
- Two options of calculating GTM
 - 1. 5-parameter VBGF (Chen et al. 2003)
 - 2. Linear relationship between pre- and post-molt length, gamma function (snow crab stock assessment report)
- Spatial dependence parameters of growth function

Calculating GTM – VBGF

The distribution of the growth increment is assumed to be normal with mean, $E(\Delta L_k)$, and variance, $Var(\Delta L_k)$, calculated as

$$E(\Delta L_k) = (L_{\infty} - L_k)(1.0 - e^{-K})$$

$$Var(\Delta L_k) = \sigma_{L_{\infty}}^2 (1 - e^{-K})^2 + (L_{\infty} - L_k)^2 \sigma_K^2 e^{-2K} + 2\rho_b \sigma_{L_{\infty}} \sigma_K (1 - e^{-K_b}) (L_{\infty} - L_k) e^{-K_b}$$

 L_{∞} , K, $\sigma_{L_{\infty}}$, σ_{K} , and the correlation between L_{∞} and $K(\rho_{b})$ are the parameters

The probability of growing from length class k to length class k+1, $Pp_{k\rightarrow k+1}$, is calculated as:

$$Pp_{k\to k+1} = \int_{low}^{up} norm (E(\Delta L_k), Var(\Delta L_k))$$

Calculating GTM – linear relationship

For crab that do molt, growth is modeled as a linear function to estimate the mean width after molting given the mean width before molting:

 $L_{k+1} = \text{int} + \text{slope} * L_k$

The probability of growing from length class k to length class k+1, $Pp_{k\to k+1}$, is calculated as:

$$Pp_{k\to k+1} = \int_{low}^{up} gamma\left(\frac{L_{k+1}}{\alpha},\beta\right)$$

$Operating \ model - {\tt a \ simulated \ population \ of \ snow \ crab}$

T/	Description	NT - 4 -
Item	Descriptor	Note
Years covered	10	
Number sexes	2	Female/Male
Lengths	25-125 mm	
Length bins	20 mm	5 size classes
Recruitment	size class 1	sex ratio $= 0.5$
length bin		
Natural	0.23	constant across space over
mortality		time
Growth	intercept = 1;	constant across space over
	slope = 1.5 ;	time
	beta = 0.5	
Commercial	Logistic	logistic (k=0.05; L ₅₀ =70)
selectivity		
Survey	1	beginning of the year;
		catchability = 1
		selectivity $=1$ for all size

Spatial variations

Item	Descriptor	Note
Initial		50-year burn-in period
condition		
Fishing	mean $F_t = 0.5$	
mortality	SD $F_t = 0.1$	
	var $\varepsilon_t = 0.1$	
	scale $\varepsilon_t = 2$	
Recruitment	mean $\mu_t =$	$n_s = 36140$
dynamics	1e6/n_s	
	Var $\varepsilon_t = 0.1$	No functional relationship
	Scale $\varepsilon_t = 2$	with SSB

Simulated population density

Year

Model testing – link OM with EM

- no sampling error
- it took 12 hours !
- not converged !!

What we found...

- too many parameters
 - covariance of process error (1000×1000 matrix)
- estimated recruitment had almost no spatial variation
 - $l_{size} = c(1, 0, 0, 0, 0)$
 - \mathbf{r}_t^u follows a spatial process $\sim MVN(\boldsymbol{\mu}_r, \boldsymbol{Q}_r^{-1})$
 - $\varepsilon_t \sim MVN(0, \mathbf{R}_{spatial} \otimes \Theta_L)$

What we changed...

- reduce the dimension only tracking males
 - only males are retained in the fishery
- turn off \mathcal{E}_t (recruitment)
 - only estimate a set of total recruitments (i.e., r_t)

Model testing – link OM with EM

- no sampling error
- it only took 1 hour !
- converged !!

Simulated data

Simulation vs. Estimation

Density of all size classes-Year1

Density of all size classes-Year1

(recruitment) size class Simulation

Year4

size class 2

Simulation

Year6

Year9

Year5

Year8

Year7

Year10

Year2

Year4

Year1

Year7

Year8

Year10

Year9

Year3

Year6

Year9

Year4

Year7

Year10

Year5

Year8

Year2

Year5

Year4

Year1

Year7

Year10

Year3

Year6

Year9

 \mathbf{c} size class Simulation

Year2

Year5

Year8

4

size class

Simulation

Year4

Year7

Year1

Year6

Year3

Year9

Year10

Year2

Year4

Year7

Year8

Year5

Year10

Year1

Year3

ſ

size class

Simulation

Year2

Year5

Year8

Year6

Year9

Year10

Year4

Year7

Year4 Year5

Year7

Year8

Year10

Year6

Simulation vs. Estimation (spatially aggregated abundance)

Simulation vs. Estimation (catch at size)

Year 1

Year 5

Simulation vs. Estimation (spatially aggregated catch)

Simulation vs. Estimation (fishing mortality)

Simulation vs. Estimation

(parameters)

Simulation		Estimation	
select	70.000	select	69.7971
select	0.05	select	0.0499

Effects of spatial scale

Estimated Recruitment

Year4

Year6

Year3

Year9

Year5

Year7 Year10

Effects of spatial scale

Adding sampling error

Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative

James T Thorson

Published on the web 13 October 2017.

Likelihood function

$$\Pr(C = c_i) = \begin{cases} 1 - p_i & \text{if } c_i = 0\\ p_i \times f(C; r_i, \sigma^2) & \text{if } c_i > 0 \end{cases}$$

Process to simulate data

 $P \sim Bernoulli(p_i)$

$$c_i = \begin{cases} 0 & \text{if } P = 0\\ LN\left(\log(r_i) - \frac{\sigma^2}{2}, \sigma^2\right) & \text{if } P > 0 \end{cases}$$

<u>Poisson-link delta-model</u>

Predicted encounter probability: $p_i = 1 - \exp(-n_i)$ Predicted positive: $r_i = n_i/p_i$

Adding sampling error - 1 replicate

Survey: $\sigma = 0.15$; Catch: $\sigma = 0.20$

Simulation (upper panel) vs. Estimation (lower panel)

- density; stochastic data (Survey: $\sigma = 0.15$; Catch: $\sigma = 0.2$)

Size class1, Year1

Size class1, Year2

Size class1,Year3

Simulation (upper panel) vs. Estimation (lower panel)

- density; stochastic data (Survey: $\sigma = 0.15$; Catch: $\sigma = 0.2$)

Simulationvs.Estimation(fishing mortality; stochastic data)

Next steps

- Further testing
 - increasing dimension, e.g., # of size classes and years
 - model misspecifications, e.g., movement
- Comparing with non-spatial assessment models
- Application (snow crab)

Thank you !