Development of a size-structured spatiotemporal model for invertebrates

Jie Cao, James T. Thorson, André Punt, Cody Szuwalski

Spatial scale

The problem of scale is the central problem in ecology

- Pattern \& Process
- Statistical relationship
- Characteristic scale

Population dynamic \& stock assessment

- Spatial homogeneity
- Tracking total abundance across the entire stock
- Survey counts/catches are aggregated spatially
- Consequences of ignoring spatial structure
- Degrading stock assessment performance
- Leading to overexploitation of weaker population units
- Ineffective recovery plans

Spatial structured stock assessments

Spatial structured stock assessments

- Spatial strata
- few sub-stocks with connectivity
- Increasing the \# of spatial strata?
- very little data for each stratum
- difficulties of estimating movement rates
- Linkage among strata

Objectives

Developing a spatiotemporal population model

- fine spatial scale
- geostatistical approach
- size-structured
* better interpret population dynamic
improve spatial management
- spatial variation
- density
- fishing mortality
- catch

Spatiotemporal population model

- Combines theory and methods from population dynamics and geostatistics
- Assume population density varies continuously across space

$$
x\left(s_{i}\right) \sim N\left(\frac{1}{\left|n_{i}\right|} \sum_{j \in n_{i}} x\left(s_{j}\right), \sigma^{2}\right)
$$

- Joint distribution for density at all locations
- Expand to account for size-structured population dynamics

Gaussian Markov random field (GMRF)

- Continuous spatial process -> discretely indexed GMRF
- Matérn covariance function
- Mesh/knot

Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science, 72(5), pp.1297-1310.

Why size-structured models?

- Advantages:
- Requires no ability to age animals (shrimps, crabs, lobsters)
- Uses the data actually available
- Vulnerability / maturity are often functions of size and not age

Abundance at size (n) for a given location s and time t

$$
\begin{aligned}
& \boldsymbol{n}_{s, t+1}=f\left(\boldsymbol{n}_{s, t}\right) \circ e^{\varepsilon_{s, t}} \\
& \boldsymbol{\Sigma}_{t} \sim \operatorname{MVN}\left(0, \mathbf{R}_{\text {spatial }} \otimes \boldsymbol{\Theta}_{\boldsymbol{L}}\right) \\
& f\left(\boldsymbol{n}_{s, t}^{\text {male }}\right)=\left\{\begin{array}{l}
\boldsymbol{r}_{s, t} * p_{\text {male }}+\mathbf{G}\left(\boldsymbol{n}_{s, t-1}^{\text {immat }} e^{-\boldsymbol{m}_{s, t-1}-\boldsymbol{v} * f_{s, t-1}^{\text {male }}}\right) *(1-\boldsymbol{w}), \\
\mathbf{G}\left(\boldsymbol{n}_{s, t-1}^{\text {immat }} e^{-\boldsymbol{m}_{s, t-1}-\boldsymbol{v} * f_{s, t-1}^{\text {male }}}\right) * \boldsymbol{w}+\boldsymbol{n}_{s, t-1}^{\text {mat }} e^{-\boldsymbol{m}_{s, t-1}-\boldsymbol{v} * f_{s, t-1}^{\text {male }}},
\end{array}\right. \\
& \boldsymbol{n}=\boldsymbol{n}^{\text {immat }} \\
& \boldsymbol{n}=\boldsymbol{n}^{\mathrm{mat}} \\
& f\left(\boldsymbol{n}_{s, t}^{\text {female }}\right)=\left\{\begin{array}{c}
\boldsymbol{r}_{s, t} * p_{\text {female }}+\mathbf{G}\left(\boldsymbol{n}_{s, t-1}^{\mathrm{immat}} e^{-\boldsymbol{m}_{s, t-1}}\right) *(1-\boldsymbol{w}), \\
\mathbf{G}\left(\boldsymbol{n}_{s, t-1}^{\mathrm{immat}} e^{-\boldsymbol{m}_{s, t-1}}\right) * \boldsymbol{w}+\boldsymbol{n}_{s, t-1}^{\mathrm{mat}} e^{-\boldsymbol{m}_{s, t-1}},
\end{array}\right. \\
& \boldsymbol{n}=\boldsymbol{n}^{\text {immat }} \\
& \boldsymbol{n}=\boldsymbol{n}^{\mathrm{mat}} \\
& \boldsymbol{r}_{L, t} \sim \operatorname{MVN}\left(r_{\mu}, \mathbf{R}_{\text {spatial }}\right) \\
& \boldsymbol{c}_{s, t}=\left(1-e^{-\boldsymbol{v} * f_{s, t}^{\text {male }}}\right) * \boldsymbol{n}_{s, t} e^{-\boldsymbol{m}_{s, t}}
\end{aligned}
$$

$$
\boldsymbol{n}_{s, t+1}=f\left(\boldsymbol{n}_{s, t}\right) \circ e^{\varepsilon_{s, t}}
$$

$\boldsymbol{\Sigma}_{t} \sim \operatorname{MVN}\left(0, \mathbf{R}_{\text {spatial }} \otimes \boldsymbol{\Theta}_{\boldsymbol{L}}\right)$

- Hadamard product (entrywise product)
\boldsymbol{s} location
t year
$\otimes \quad$ Kronecker product
$\boldsymbol{n}_{s, t} \quad$ vector of abundances for each of 1 size classes
$f() \quad$ function representing population dynamic
$\boldsymbol{\varepsilon}_{s, t} \quad$ vector of random effects (process error)
$\boldsymbol{\Theta}_{\boldsymbol{L}} \quad$ covariance among size classes (l by 1 matrix \mathbf{L})
$\mathbf{R}_{\text {spatial }}$ spatial covariance matrix (covariance between 2 locations follows a Matern function)

Kronecker product

Imagine $\mathbf{1 0 0}$ knots and $\mathbf{3 0}$ size classes !

$f\left(\boldsymbol{n}_{s, t}\right)$ - population dynamic

Snow crab

- Male/Female
- Only males are retained in the fishery
- Split into maturity state
- Mature individuals do not molt

Population dynamic $(f())$

$$
\begin{aligned}
& f\left(\boldsymbol{n}_{s, t}^{\text {male }}\right)=\left\{\begin{array}{cl}
\boldsymbol{r}_{s, t} * p_{\text {male }}+\mathbf{G}\left(\boldsymbol{n}_{s, t-1}^{\text {immat }} e^{\left.-\boldsymbol{m}_{s, t-1}-\boldsymbol{v} * f_{s, t-1}^{\text {male }}\right)}\right) *(1-\boldsymbol{w}), & \boldsymbol{n}=\boldsymbol{n}^{\text {immat }} \\
\mathbf{G}\left(\boldsymbol{n}_{s, t-1}^{\text {immat }} e^{-\boldsymbol{m}_{s, t-1}-\boldsymbol{v} * f_{s, t-1}^{\text {male }}}\right) * \boldsymbol{w}+\boldsymbol{n}_{s, t-1}^{\text {mat }} e^{-\boldsymbol{m}_{s, t-1}-\boldsymbol{v} * \overbrace{s, t-1}^{\text {male }},} & \boldsymbol{n}=\boldsymbol{n}^{\text {mat }}
\end{array}\right. \\
& \boldsymbol{r}_{s, t} \quad \text { vector of recruitment for each of } 1 \text { size classes } \\
& p_{\text {male }} \quad \text { proportion of male recruitment } \\
& \text { G growth transition matrix } \\
& \boldsymbol{m}_{s, t} \quad \text { vector of natural mortality at location } \mathrm{s} \text {, year } \mathrm{t} \\
& f_{s, t}^{\text {male }} \quad \text { fishing mortality at location } \mathrm{s} \text {, year } \mathrm{t} \\
& \text { vector of immature abundance for each of } 1 \text { size classes } \\
& \boldsymbol{n}_{s, t}^{\mathrm{mat}} \quad \text { vector of mature abundance for each of } 1 \text { size classes }
\end{aligned}
$$

Population dynamic - parameters

Recruitment

$$
\boldsymbol{r}_{s, t}=r_{s, t}^{u} * \boldsymbol{l}_{\text {size }}
$$

$\boldsymbol{r}_{s, t}$	- vector of recruitment for each of p size classes
$\boldsymbol{l}_{\text {size }}$	- vector of proportion of recruitment
$\mathrm{r}_{s, t}^{u}$	- recruitment at location s and year t

r_{t}^{u} follows a spatial process $\sim M V N\left(\boldsymbol{\mu}_{r}, \mathbf{Q}_{r}^{-1}\right)$

Fishing mortality

$$
\mathrm{f}_{l, s, t}=\mathrm{f}_{\mathrm{s}, \mathrm{t}} v_{l}
$$

$\mathrm{f}_{s, t}$	-f at location s and year t
v_{l}	- selectivity of size class l

$$
\boldsymbol{v}_{l}=\frac{1}{1+e^{\left(-k\left(L_{p}-L_{50}\right)\right)}}
$$

$$
\mathrm{f}_{s, t} \mid \mathrm{f}_{s, t-1} \sim \mathrm{~N}\left(\mathrm{f}_{s, t-1}, \sigma_{f}^{2}\right) \quad \text { random effect }
$$

Growth transition matrix (G) and natural mortality (m) - input data

Summary of parameters

Fixed effects

S
$\boldsymbol{\Theta}_{\boldsymbol{L}} \quad$ process error covariance (among size classes)
$\mu_{t} \quad$ average offset of annual recruitment
$\varphi \quad$ initial abundance of each size class geostatistical range for correlations parameters of selectivity (logistic)

Parameters of observation model

Random effects

$\mathrm{r}_{t}^{u} \quad$ spatial variation in recruitment
$\mathrm{n}_{t} \quad$ spatial variation in density for each size class and year
f fishing mortality of location s over time
treat density as random, rather than process errors $\left(\varepsilon_{t}\right)$

Input data

survey data

commercial catch data

X	lat	lon	year	X. 1	X. 2	X. 3	X. 4	X. 5
1	55.6	-169	1	0.802	2.82	2.32	3.18	7.18
2	56.3	-170	1	0.657	1.83	1.54	2.15	4.94
3	56.3	-170	1	0.662	1.82	1.54	2.16	4.96
4	56.2	-171	1	0.64	1.78	1.5	2.1	4.81
5	56.2	-170	1	0.645	1.8	1.51	2.12	4.85
6	56.2	-170	1	0.646	1.82	1.52	2.13	4.88

- fine scale
- aggregated to knot-level

Model outputs

- Predicted population density map
- Estimated fishing mortality map
- Predicted catch map
- Estimated covariance of process error

Estimation

- SPDE - MVN
- Piecewise constant
- Catch - lognormal
- Survey - lognormal/Poisson-link

Template Model Builder (TMB)

Operating model - overview

- Dynamics occur at fine scale
- Population dynamics (non-spatial) formulated identically to EM
- Cell-specific parameters (spatially correlated)
- No movement
- Annual time step

Operating model - recruitment

1. Draw average annual recruitments $\left(\mu_{t}\right)$ from a Poisson distribution
2. Define spatial variance and scale $\left(\sigma_{t}^{2}, \kappa_{t}\right)$ for each year model_R <-RMgauss $\left(\sigma_{t}^{2}, \kappa_{t}\right)$
3. Simulate a Gaussian random field for each year on the grid $\left(\varepsilon_{t}\right)$ $\varepsilon_{t}<-$ RFsimulate $\left(\right.$ model $=$ smodel_R, $\mathrm{x}=$ loc_ $^{\mathrm{x}[, 1], \mathrm{y}=\text { loc_ } \mathrm{x}[, 2]) ~}$
4. Calculate recruitment of each cell s and year $t, R_{s, t}=\mu_{t} e^{\varepsilon_{t}}$
5. Allocate recruitment $R_{s, t}$ to each size class

Operating model
 - recruitment examples

Operating model - fishing mortality

- Similar way as simulating recruitment $\left(f_{s, t}=f_{t} e^{\varepsilon_{t}}\right)$
- Selectivity (s) - Logistic function (2 parameters)
- Fishing mortality $f_{p, s, t}=f_{s, t} v_{l}$
- Flexibility in f_{t} and ε_{t}
- Different parameterization in EM

Operating model - growth

- EM uses growth transition matrix (GTM) directly
- Two options of calculating GTM

1. 5-parameter VBGF (Chen et al. 2003)
2. Linear relationship between pre- and post-molt length, gamma function (snow crab stock assessment report)

- Spatial dependence - parameters of growth function

Calculating GTM - VBGF

The distribution of the growth increment is assumed to be normal with mean, $E\left(\Delta L_{k}\right)$, and variance, $\operatorname{Var}\left(\Delta L_{k}\right)$, calculated as

$$
\begin{aligned}
& E\left(\Delta L_{k}\right)=\left(L_{\infty}-L_{k}\right)\left(1.0-e^{-K}\right) \\
& \operatorname{Var}\left(\Delta L_{k}\right)=\sigma_{L_{\infty}}^{2}\left(1-e^{-K}\right)^{2}+\left(L_{\infty}-L_{k}\right)^{2} \sigma_{K}^{2} e^{-2 K}+2 \rho_{b} \sigma_{L_{\infty}} \sigma_{K}\left(1-e^{-K_{b}}\right)\left(L_{\infty}-L_{k}\right) e^{-K}
\end{aligned}
$$

$L_{\infty}, K, \sigma_{L_{\infty}}, \sigma_{K}$, and the correlation between L_{∞} and $K\left(\rho_{b}\right)$ are the parameters

The probability of growing from length class k to length class $k+1, P p_{k \rightarrow k+1}$, is calculated as:

$$
P p_{k \rightarrow k+1}=\int_{\text {low }}^{u p} \operatorname{norm}\left(E\left(\Delta L_{k}\right), \operatorname{Var}\left(\Delta L_{k}\right)\right)
$$

Calculating GTM - linear relationship

For crab that do molt, growth is modeled as a linear function to estimate the mean width after molting given the mean width before molting:

$$
L_{k+1}=\text { int }+ \text { slope } * L_{k}
$$

The probability of growing from length class k to length class $k+1, P p_{k \rightarrow k+1}$, is calculated as:

$$
P p_{k \rightarrow k+1}=\int_{\text {low }}^{u p} \operatorname{gamma}\left(\frac{L_{k+1}}{\alpha}, \beta\right)
$$

Operating model - a simulated population of snow crab

Item	Descriptor	Note
Years covered	10	
Number sexes	2	Female/Male
Lengths	$25-125 \mathrm{~mm}$	
Length bins	20 mm	5 size classes
Recruitment length bin	size class 1	sex ratio $=0.5$
Natural	0.23	constant across space over time
mortality	intercept $=1 ;$ slope $=1.5 ;$ beta $=0.5$	constant across space over time
Commercial	Logistic	logistic $\left(k=0.05 ; L_{50}=70\right)$ selectivity
Survey	1	beginning of the year; catchability $=1$ selectivity $=1$ for all size

Spatial variations

Item	Descriptor	Note
Initial		50-year burn-in period
condition		
Fishing	mean $F_{t}=0.5$	
mortality	SD $F_{t}=0.1$	
	$\operatorname{var} \varepsilon_{t}=0.1$	
	scale $\varepsilon_{t}=2$	
Recruitment	mean $\mu_{t}=$	$\mathrm{n} _\mathrm{s}=36140$
dynamics	$1 \mathrm{e} 6 / \mathrm{n} _\mathrm{s}$	
	Var $\varepsilon_{t}=0.1$	No functional relationship
	Scale $\varepsilon_{t}=2$	with SSB

Simulated population density

$x^{2}+x^{2}$

Model testing - link OM with EM

- no sampling error
- it took 12 hours !
- not converged !!

What we found...

- too many parameters
- covariance of process error $(1000 \times 1000$ matrix $)$
- estimated recruitment had almost no spatial variation
- $\boldsymbol{l}_{\text {size }}=\mathrm{c}(1,0,0,0,0)$
- r_{t}^{u} follows a spatial process $\sim M V N\left(\boldsymbol{\mu}_{r}, \mathbf{Q}_{r}^{-\mathbf{1}}\right)$
- $\varepsilon_{t} \sim \operatorname{MVN}\left(0, \boldsymbol{R}_{\text {spatial }} \otimes \boldsymbol{\Theta}_{L}\right)$

What we changed...

- reduce the dimension - only tracking males
- only males are retained in the fishery
- turn off ε_{t} (recruitment)
- only estimate a set of total recruitments (i.e., r_{t})

Model testing - link OM with EM

- no sampling error
- it only took 1 hour !
- converged !!

Simulated data

Simulation
 VS.
 Estimation

Density of all size classes-Year1
Density of all size classes-Year1

Simulation - size class 3

Year10

Simulation vs. Estimation

(spatially aggregated abundance)

Size class 1

Size class 2

Size class 3

Size class 4

Size class 5

Simulation vs. Estimation

(catch at size)

Simulation vs. Estimation

(spatially aggregated catch)

Size class 1

Size class 2

Size class 3

Size class 4

Size class 5

Simulation vs. Estimation
 (fishing mortality)

Simulation vs. Estimation (parameters)

Simulation	
select	70.000
select	0.05

Extrapolation (Lat-Lon)

Effects of spatial scale

Effects of spatial scale

Size class 1

Size class 2

Size class 3

Size class 4

Size class 5

Adding sampling error

Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative

James T Thorson

Likelihood function

$$
\operatorname{Pr}\left(C=c_{i}\right)=\left\{\begin{array}{cl}
1-p_{i} & \text { if } c_{i}=0 \\
p_{i} \times f\left(C ; r_{i}, \sigma^{2}\right) & \text { if } c_{i}>0
\end{array}\right.
$$

Published on the web 13 October 2017.
Process to simulate data

Poisson-link delta-model

Predicted encounter probability: $p_{i}=1-\exp \left(-n_{i}\right)$
Predicted positive:

$$
r_{i}=n_{i} / p_{i}
$$

$$
P \sim \operatorname{Bernoulli}\left(p_{i}\right)
$$

$$
c_{i}=\left\{\begin{array}{c}
0 \quad \text { if } P=0 \\
L N\left(\log \left(r_{i}\right)-\frac{\sigma^{2}}{2}, \sigma^{2}\right) \quad \text { if } P>0
\end{array}\right.
$$

Adding sampling error
 - 1 replicate

Survey: $\sigma=0.15$; Catch: $\sigma=0.20$

Size class 1

Size class 3

Year

Size class 4

Year

Size class 5

Year

Simulation (upper panel) vs. Estimation (lower panel)

- density; stochastic data (Survey: $\sigma=0.15$; Catch: $\sigma=0.2$)

Simulation (upper panel) vs. Estimation (lower panel)

- density; stochastic data (Survey: $\sigma=0.15$; Catch: $\sigma=0.2$)

Simulation vs. Estimation

(fishing mortality; stochastic data)

Next steps

- Further testing
- increasing dimension, e.g., \# of size classes and years
- model misspecifications, e.g., movement
- Comparing with non-spatial assessment models
- Application (snow crab)

Thank you!

