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Spatial scale
The problem of scale is the central problem in ecology

▪ Pattern & Process

▪ Statistical relationship

▪ Characteristic scale



Population dynamic & stock assessment

• Spatial homogeneity

• Tracking total abundance across the entire stock
• Survey counts/catches are aggregated spatially

• Consequences of ignoring spatial structure
• Degrading stock assessment performance

• Leading to overexploitation of weaker population units

• Ineffective recovery plans



Spatial structured stock assessments



Spatial structured stock assessments

• Spatial strata 

• few sub-stocks with connectivity 

• Increasing the # of spatial strata? 
• very little data for each stratum

• difficulties of estimating movement rates

• Linkage among strata



Objectives

Developing a spatiotemporal population model

▪ spatial variation

• density

• fishing mortality

• catch

▪ fine spatial scale 

▪ geostatistical approach

▪ size-structured

❖ better interpret population dynamic

❖ improve spatial management



• Combines theory and methods from population dynamics and geostatistics

• Assume population density varies continuously across space

• Joint distribution for density at all locations

• Expand to account for size-structured population dynamics

Spatiotemporal population model
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Gaussian Markov random field (GMRF)

• Continuous spatial process -> discretely indexed GMRF

• Matérn covariance function

• Mesh/knot

Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve 

precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science, 72(5), pp.1297-1310.



Why size-structured models?

• Advantages:

– Requires no ability to age animals (shrimps, crabs, 

lobsters)

– Uses the data actually available

– Vulnerability / maturity are often functions of size and 

not age



Abundance at size (n) for a given location s and time t

𝒏𝑠,𝑡+1 = 𝑓(𝒏𝑠,𝑡) ∘ 𝑒
𝜺𝑠,𝑡

𝚺𝑡 ~MVN(0, 𝐑𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ⊗ 𝚯𝑳)

𝑓 𝒏𝑠,𝑡
male = ቐ

𝒓𝑠,𝑡 ∗ 𝑝male + 𝐆(𝒏𝑠,𝑡−1
immat𝑒−𝒎𝑠,𝑡−1−𝒗∗𝑓𝑠,𝑡−1

male
) ∗ (1 − 𝒘), 𝒏 = 𝒏immat

𝐆(𝒏𝑠,𝑡−1
immat𝑒−𝒎𝑠,𝑡−1−𝒗∗𝑓𝑠,𝑡−1

male
) ∗ 𝒘 + 𝒏𝑠,𝑡−1

mat 𝑒−𝒎𝑠,𝑡−1−𝒗∗𝑓𝑠,𝑡−1
male

, 𝒏 = 𝒏mat

𝑓 𝒏𝑠,𝑡
female = ൝

𝒓𝑠,𝑡 ∗ 𝑝female + 𝐆(𝒏𝑠,𝑡−1
immat𝑒−𝒎𝑠,𝑡−1) ∗ (1 − 𝒘), 𝒏 = 𝒏immat

𝐆(𝒏𝑠,𝑡−1
immat𝑒−𝒎𝑠,𝑡−1) ∗ 𝒘 + 𝒏𝑠,𝑡−1

mat 𝑒−𝒎𝑠,𝑡−1 , 𝒏 = 𝒏mat

𝒓𝐿,𝑡~MVN(𝑟𝜇, 𝐑𝑠𝑝𝑎𝑡𝑖𝑎𝑙)

𝒄𝑠,𝑡 = 1 − 𝑒−𝒗∗𝑓𝑠,𝑡
male

∗ 𝒏𝑠,𝑡𝑒
−𝒎𝑠,𝑡



𝒏𝑠,𝑡+1 = 𝑓(𝒏𝑠,𝑡) ∘ 𝑒
𝜺𝑠,𝑡

𝚺𝑡 ~MVN(0, 𝐑𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ⊗ 𝚯𝑳)

𝒏𝑠,𝑡 vector of abundances for each of l size classes

𝑓() function representing population dynamic

𝜺𝑠,𝑡 vector of random effects (process error)

𝚯𝑳 covariance among size classes (l by l matrix L)

𝐑𝑠𝑝𝑎𝑡𝑖𝑎𝑙 spatial covariance matrix (covariance between 2 

locations follows a Matern function)

∘ Hadamard product (entrywise product)

s location

t year

⊗ Kronecker product

Kronecker product

Imagine 100 knots and 30 size classes !



𝑓 𝒏𝑠,𝑡 - population dynamic

• Male/Female 

• Only males are retained in the fishery

• Split into maturity state

• Mature individuals do not molt

Snow crab 



Population dynamic (𝑓())

𝒓𝑠,𝑡 vector of recruitment for each of l size classes

𝑝male proportion of male recruitment

G growth transition matrix

𝒎𝑠,𝑡 vector of natural mortality at location s, year t

𝑓𝑠,𝑡
𝑚𝑎𝑙𝑒 fishing mortality at location s, year t

v vector of selectivity at size

𝒏𝑠,𝑡
immat vector of immature abundance for each of l size classes

𝒏𝑠,𝑡
mat vector of mature abundance for each of l size classes

w vector of maturity of each size class

𝑓 𝒏𝑠,𝑡
male = ቐ

𝒓𝑠,𝑡 ∗ 𝑝male + 𝐆(𝒏𝑠,𝑡−1
immat𝑒−𝒎𝑠,𝑡−1−𝒗∗𝑓𝑠,𝑡−1

male
) ∗ (1 − 𝒘), 𝒏 = 𝒏immat

𝐆(𝒏𝑠,𝑡−1
immat𝑒−𝒎𝑠,𝑡−1−𝒗∗𝑓𝑠,𝑡−1

male
) ∗ 𝒘 + 𝒏𝑠,𝑡−1

mat 𝑒−𝒎𝑠,𝑡−1−𝒗∗𝑓𝑠,𝑡−1
male

, 𝒏 = 𝒏mat



Population dynamic - parameters

Recruitment

𝒓𝑠,𝑡 = 𝑟𝑠,𝑡
𝑢 ∗ 𝒍𝑠𝑖𝑧𝑒

𝒓𝑠,𝑡 – vector of recruitment for each of p size classes

𝒍𝑠𝑖𝑧𝑒 – vector of proportion of recruitment 

r𝑠,𝑡
𝑢 – recruitment at location s and year t

r𝑡
𝑢 follows a spatial process ~𝑀𝑉𝑁 𝛍𝑟 , 𝐐𝒓

−𝟏

Fishing mortality

f𝑙,𝑠,𝑡 = f𝑠,𝑡 𝑣𝑙

f𝑠,𝑡 – f at location s and year t

𝑣𝑙 – selectivity of size class l

𝒗𝑙 =
1

1 + 𝑒
൯−𝑘(𝐿𝑝−𝐿50

f𝑠,𝑡|f𝑠,𝑡−1 ~ N(f𝑠,𝑡−1, 𝜎𝑓
2) random effect

Growth transition matrix (G) and natural mortality (m) – input data 



Summary of parameters

𝚯𝑳 process error covariance (among size classes)

𝜅 geostatistical range for correlations

𝜇𝑡 average offset of annual recruitment

𝜑 initial abundance of each size class

s parameters of selectivity (logistic)

Parameters of observation model

r𝑡
𝑢 spatial variation in recruitment 

n𝑡 spatial variation in density for each size class 

and year

f fishing mortality of location s over time

treat density as random, rather than process errors 

(𝜀𝑡)

Fixed effects Random effects



Input data

survey data commercial catch data

• used to create mesh/knots
• fine scale

• aggregated to knot-level



Model outputs

• Predicted population density map

• Estimated fishing mortality map

• Predicted catch map

• Estimated covariance of process error



Estimation 

Template Model Builder (TMB) 

• SPDE –MVN

• Piecewise constant

• Catch – lognormal 

• Survey – lognormal/Poisson-link



Operating model – overview

• Dynamics occur at fine scale

• Population dynamics (non-spatial) 

formulated identically to EM

• Cell-specific parameters (spatially 

correlated)

• No movement

• Annual time step

-175 -170 -165 -160

5
0

5
5

6
0

6
5

# of cells: 36140



Operating model – recruitment

1. Draw average annual recruitments (𝜇𝑡) from a Poisson distribution 

2. Define spatial variance and scale (𝜎𝑡
2, 𝜅𝑡) for each year                      

model_R <- RMgauss(𝜎𝑡
2, 𝜅𝑡)

3. Simulate a Gaussian random field for each year on the grid (𝜀𝑡)              
𝜀𝑡<- RFsimulate(model = smodel_R, x=loc_x[,1], y=loc_x[,2])

4. Calculate recruitment of each cell s and year t, 𝑅𝑠,𝑡 = 𝜇𝑡𝑒
𝜀𝑡

5. Allocate recruitment 𝑅𝑠,𝑡 to each size class



Operating model 
– recruitment examples

# of size classes (population): n_p = 5

# of years: n_t = 10

# of size bins (recruitment): n_r = 1

scale = 2scale = 1scale = 0.5



Operating model – fishing mortality

• Similar way as simulating recruitment (𝑓𝑠,𝑡 = 𝑓𝑡𝑒
𝜀𝑡)

• Selectivity (s) - Logistic function (2 parameters)

• Fishing mortality 𝑓𝑝,𝑠,𝑡 = 𝑓𝑠,𝑡 𝑣𝑙

• Flexibility in 𝑓𝑡 and 𝜀𝑡

• Different parameterization in EM



Operating model – growth

• EM uses growth transition matrix (GTM) directly

• Two options of calculating GTM

1. 5-parameter VBGF (Chen et al. 2003)

2. Linear relationship between pre- and post-molt length, gamma function (snow crab stock assessment report)

• Spatial dependence – parameters of growth function



Calculating GTM – VBGF

𝐸 ∆𝐿𝑘 = 𝐿∞ − 𝐿𝑘 1.0 − 𝑒−𝐾

The distribution of the growth increment is assumed to be normal with 

mean, 𝐸 ∆𝐿𝑘 , and variance, 𝑉𝑎𝑟 ∆𝐿𝑘 , calculated as

𝑉𝑎𝑟 ∆𝐿𝑘 = 𝜎𝐿∞
2 1 − 𝑒−𝐾 2 + 𝐿∞ − 𝐿𝑘

2𝜎𝐾
2𝑒−2𝐾 + 2𝜌𝑏𝜎𝐿∞𝜎𝐾 1 − 𝑒−𝐾𝑏 𝐿∞ − 𝐿𝑘 𝑒−𝐾

𝐿∞, K, 𝜎𝐿∞, 𝜎𝐾, and the correlation between 𝐿∞ and K (𝜌𝑏) are the parameters

𝑃𝑝𝑘→𝑘+1 = න
𝑙𝑜𝑤

𝑢𝑝

𝑛𝑜𝑟𝑚 𝐸 ∆𝐿𝑘 , 𝑉𝑎𝑟 ∆𝐿𝑘

The probability of growing from length class k to length class k+1, 𝑃𝑝𝑘→𝑘+1, is calculated as: 



Calculating GTM – linear relationship 

For crab that do molt, growth is modeled as a linear function to estimate 

the mean width after molting given the mean width before molting: 

𝑃𝑝𝑘→𝑘+1 = න
𝑙𝑜𝑤

𝑢𝑝

𝑔𝑎𝑚𝑚𝑎
𝐿𝑘+1
𝛼

, 𝛽

The probability of growing from length class k to length class k+1, 𝑃𝑝𝑘→𝑘+1, is calculated as: 

𝐿𝑘+1 = int + slope ∗ 𝐿𝑘



Operating model – a simulated population of snow crab

Item Descriptor Note

Years covered 10

Number sexes 2 Female/Male

Lengths 25-125 mm

Length bins 20 mm 5 size classes

Recruitment 

length bin

size class 1 sex ratio = 0.5

Natural 

mortality 

0.23 constant across space over 

time

Growth intercept = 1;

slope = 1.5;

beta = 0.5

constant across space over 

time

Commercial 

selectivity

Logistic logistic (k=0.05; L50=70)

Survey 1 beginning of the year; 

catchability = 1

selectivity =1 for all size

Item Descriptor Note

Initial

condition 

50-year burn-in period

Fishing 

mortality

mean 𝐹𝑡 = 0.5

SD 𝐹𝑡 = 0.1

var 𝜀𝑡 = 0.1

scale 𝜀𝑡 = 2

Recruitment 

dynamics

mean 𝜇𝑡= 

1e6/n_s

Var 𝜀𝑡 = 0.1

Scale 𝜀𝑡 = 2

n_s = 36140

No functional relationship 

with SSB

Spatial variations



Simulated population density

Year

Si
ze

 c
la

ss



Model testing – link OM with EM

• no sampling error

• it took 12 hours !

• not converged !!



What we found…

▪ too many parameters

• covariance of process error (1000 × 1000 matrix) 

▪ estimated recruitment had almost no spatial variation
• 𝒍𝑠𝑖𝑧𝑒 = c(1, 0, 0, 0, 0)

• r𝑡
𝑢 follows a spatial process ~𝑀𝑉𝑁 𝛍𝑟 , 𝐐𝒓

−𝟏

• 𝜀𝑡 ~𝑀𝑉𝑁(0,𝑹𝒔𝒑𝒂𝒕𝒊𝒂𝒍 ⊗𝚯𝑳)



What we changed…

▪ reduce the dimension - only tracking males

• only males are retained in the fishery

▪ turn off 𝜀𝑡 (recruitment)

• only estimate a set of total recruitments (i.e., 𝑟𝑡)



Model testing – link OM with EM

• no sampling error

• it only took 1 hour !

• converged !!



Simulated data



Simulation      vs.       Estimation
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Simulation vs. Estimation
(spatially aggregated abundance)



Simulation vs. Estimation
(catch at size)

Year 1 Year 5 Year 10



Simulation vs. Estimation
(spatially aggregated catch)



Simulation      vs.      Estimation
(fishing mortality)



Simulation vs. Estimation
(parameters)

select      69.7971

select       0.0499

select      70.000

select       0.05

EstimationSimulation
Estimated covariance of process errors ( 𝜮𝑳 )



Effects of spatial scale

Simulated Recruitment

scale = 0.5

Estimated Recruitment



Effects of spatial scale



Adding sampling error

Poisson-link delta-model

Predicted encounter probability: 𝑝𝑖 = 1 − exp(−𝑛𝑖)
Predicted positive: 𝑟𝑖 = 𝑛𝑖/𝑝𝑖

Likelihood function

Pr 𝐶 = 𝑐𝑖 = ቊ
1 − 𝑝𝑖 if 𝑐𝑖 = 0

𝑝𝑖 × 𝑓 𝐶; 𝑟𝑖 , 𝜎
2 if 𝑐𝑖 > 0

Process to simulate data

𝑃~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝𝑖

𝑐𝑖 = ൞

0 if 𝑃 = 0

𝐿𝑁 log 𝑟𝑖 −
𝜎2

2
, 𝜎2 if 𝑃 > 0



Survey: 𝜎 = 0.15; Catch: 𝜎 = 0.20

Adding sampling error 
– 1 replicate



Simulation (upper panel) vs.  Estimation (lower panel)

- density; stochastic data (Survey: 𝜎 = 0.15; Catch: 𝜎 = 0.2)



Simulation (upper panel) vs.  Estimation (lower panel)

- density; stochastic data (Survey: 𝜎 = 0.15; Catch: 𝜎 = 0.2)



Simulation        vs.        Estimation
(fishing mortality; stochastic data)



• Further testing 

• increasing dimension, e.g., # of size classes and 
years

• model misspecifications, e.g., movement 

• Comparing with non-spatial assessment models

• Application (snow crab)

Next steps



Thank you !


