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Background
I What this talk is not: introduction to Bayesian inference,

model convergence diagnostics, model selection

I How do you go about assessing goodness-of-fit in a big
hierarchical model?



Code and dependencies

I Presentation and R Markdown code available at
www.github.com/pconn/BMC_CAPAM_talk

I Some functions from HierarchicalGOF R package, install
available at www.github.com/pconn/HierarchicalGOF

NB: This package accompanied Conn et al. (2018); never intended
for production level use!

I Some of these diagnostics are in the DHARMa R package
(Hartig 2021)

www.github.com/pconn/BMC_CAPAM_talk
www.github.com/pconn/HierarchicalGOF


Notation

I Bold: vector or matrix

I [θ] : Marginal distribution of θ

I [y|θ]: Conditional distribution of y given θ

I f (yi |θ): Probability mass or density function evaluated at yi

I F (yi |θ) =
∫ yi
−∞ f (z |θ)dz : Cumulative mass or density function

evaluated at yi

I [yrep|y] =
∫

[yrep|θ][θ|y]dθ: Posterior predictive distribution



Example dataset

Simulated spatial count dataset (think CPUE index standardization
with spatially autocorrelated random effects) with 200 randomly
sampled locations.

yi ∼ Poisson(exp(x′iβ + ηi + εi))
η ∼ Predictive-process-exponential(θ, τη)
εi ∼ Normal(0, 1/τε)



Example dataset
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Example estimation models

DAGs for count data



Posterior predictive checks

Posterior predictive distribution:

[yrep|y] =
∫

[yrep|θ][θ|y]dθ

Practically:

1. Sample from the posterior θrep ∼ [θ|y]

2. Generate replicated posterior predictive data yrep|θrep.

3. Compare real data to simulated data in some fashion. Do they
look similar?



Graphical checks
Many possible checks, perhaps used more informally since
assessment of fit from graphs is somewhat subjective. See,
e.g. bayesplot library for Stan users.

Example: Generate “null” distribution of Moran-I statistic values for
posterior predictions and compare to those for observed data
(shown: Bayesian GLM)
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Discrepancy functions - T (y, θ)

Are my data similar to those simulated from a model (i.e., posterior
predictions)?

-Omnibus: e.g., Chi-square, Freeman-Tukey, Deviance, Likelihood
ratio

-Targeted: Quantiles, Proportion of zeros, Moran’s I of residuals

-Pivotal: Stay tuned!



Bayesian p-values

Historically, this is the most frequently reported Bayesian model
checking procedure.

P ← 0
for i ∈ 1 : m do
Draw θi ∼ [θ|y]
Draw yrep

i ∼ [y|θi ]
Calculate T rep

i = T (yrep
i ,θi)

Calculate T obs
i = T (y,θi)

if T obs
i < T rep

i then
P ← P + 1

end if
end for
P ← P/m



Bayesian p-values for spatial regression example

F-T ChiSq Moran Zeroes Tail

GLM 0.00 0.00 0.00 0.50 0.00
GLMM-Simple 0.55 0.55 0.00 0.20 0.90
GLMM-Spatial 0.39 0.42 0.79 0.29 0.61



Bayesian P-values: problems with interpretation

Question: If data were repeatedly simulated under the same model
that is used for estimation, what distribution of p-values would we
hope to get?



Bayesian P-values: problems with interpretation
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Bayesian P-values: problems with interpretation
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Bayesian p-values are known to be conservative!! An extreme value
is indicative of lack-of-fit, but a smallish one (e.g. 0.1) may or may
not be problematic (in this case a calibrated p-value is 0.02!!)



Sampled posterior p-values

P ← 0
Draw θ ∼ [θ|y]
for i ∈ 1 : m do
Draw yrep

i ∼ [y|θ]
Calculate T rep

i = T (yrep
i ,θ)

Calculate T obs
i = T (y,θ)

if T obs
i < T rep

i then
P ← P + 1

end if
end for
P ← P/m

-Advantage: P-value distribution guaranteed to be uniform

-Disadvantage: Answer depends on random number seed!



Pivotal discrepancy measures (Yuan and Johnson 2012)

Can be used to test lack-of-fit at any stage of a hierarchical model.

Two strategies:

1) Parametric: Use known distributional properties, e.g.,

Y ∼ N (µ, σ2)→ Z = Y−µ
σ ∼ N(0, 1)

Here, Z is a pivotal quantity in that it’s reference distribution does
not depend on µ or σ. Simply keep track of Z and compare to
N (0, 1).



Pivotal discrepancy measures

2) Use a probability integral transform (PIT)

Continuous:

F (yij |θ) ∼ U(0, 1)

Discrete:

wij ∼ U(0, 1) where
wij = F (yij − 1|θ) + uij f (yij |θ) and
uij ∼ U(0, 1)

Here wij is called a “randomized quantile residual” (Dunn and
Smyth 1996)



Pivotal discrepancy measures
Application to spatial regression example. PIT test on simple
GLMM using a χ2 test for uniformity,
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The median χ2 p-value computed in this way (taken across MCMC
samples) was 0.37.



Cross validation

Probably the gold standard!! But computationally intensive.

Spatial regression example: K-fold cross validatation with 40 folds
of 5 observations each - Simple GLMM model:

-Test for uniformity of empirical CDF: p = 0.13



Summary - Bayesian model checking

-Trade off between complexity and performance!

-Posterior predictive p-values, PIT tests are all fast and relatively
easy to implement but are conservative. They can tell you when
data fit a model terribly, but it is difficult to pinpoint small or
moderate lack-of-fit

-Sampled posterior p-values have properly stated p-values but results
can differ based on the posterior draw chosen

-Pivotal discrepancy measures allow you to examine fit at different
levels of a hierarchical model

-Cross validation tests and calibrated p-values require considerably
more investment (running Bayesian analyses interatively)



Bonus!! GOF for integrated population models

“Calibrated simulation” approach (Besbeas and Morgan 2014).
Similar in spirit to Bayesian p-values.

1. Fit integrated population model; obtain MLEs, θ̂ and
associated variance-covariance matrix Σ̂θ

2. For k = 1, 2, · · · , n, simulate data yk ∼ [y|θ̃k ] where
θ̃k ∼ Multivariate-normal(θ̂, Σ̂θ)

3. Compare T (y,θk) with T (yk ,θk) in the same manner as in a
Bayesian p-value for each dataset.

4. One can use a simulation study to look at what distribution of
p-values one might expect under a “correct” model, and use
these for calibration or to select a preferred discrepancy
function.
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