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Background / specific case for work

* Spatial approaches to manage data-poor species
* Existing techniques often struggle / suboptimal

* Boosted Regression Trees (BRTs/GBMs) complicated but excellent
performance:

* Robust to poor/absent data

* Can use abundance data

* Unaffected by missing predictor values, outliers, multicollinearity

* Can accommodate large numbers of explanatory variables without penalty

* More robust predictions than GLMs and GAMs

* Less variance (oversensitivity to noise leading to overfitting /imprecision)

* Less bias (false assumptions in the algorithm leading to underfitting /inaccuracy)
* Lower risk of misspecification

* Ability to model complex interactions



Regression Tree models:

Machine learning. No assumed relationship, model learns predictor-response relationships

Uses algorithms to partition the predictor space into sections of the most homogenous response to predictors — blocks
of reliable predictor-response relationship — carving out these blocks in binary splits at points along the predictors’
ranges

Predictors & split points calculated to minimise prediction error
Not as accurate as GLMs/GAMs
Bad at modelling smooth functions

Very dependent on the sample data used, i.e. results aren’t generalisable

Boosting

“it is easier to find and average many rough rules of thumb, than to find a single, highly accurate prediction rule”
(Elith et al. 2008)

Finds one tree that best explains the predictors-response relationship, then

Finds the tree that best explains the predictors-response relationship of the residuals of the one-free model (which is a
new tree with different values)

Updates the model to incorporate the predictors-response relationship information gained from tree 1 plus tree 2

Runs this new 2 tree model on the data (choosing a different random testing chunk each time), producing new
residuals. Makes new tree to test residuals, adds to model to make 3 tree model, runs 3 tree model. Repeats 1000s
of times: remaining unaccounted-for deviance falls, until adding trees is unhelpful.



Journal of Animal Ecology

Journal of Animal Ecology 2008, 77, 802-813

A working guide to boosted regression trees

J. Elith'*, J. R. Leathwick? and T. Ha
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“Boosting is a numerical optimization
technique for minimizing the loss
function by adding, at each step, a
new tree that best reduces (steps
down the gradient of) the loss
function. For BRT, the first regression
tree is the one that, for the selected
tree size, maximally reduces the loss
function. For each following step, the
focus is on the residuals: at the
second step, a tree is fitted to the
residuals of the first tree, and that
second tree could contain quite
different variables and split points
compared with the first. The model is
then updated to contain two trees
(two terms), and the residuals from
this two-term model are calculated,
and so on.”



As the model incorporates more trees, the remaining unaccounted-for deviance falls, until the
point where adding more trees adds unnecessary complexity and explains the predictors-
response relationship LESS well. The code notes the number of trees which produce the lowest
holdout deviance score, here 1000, and uses that model going forward.
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Relative contribution
of each variable

Predictor-response
relationship for each variable

All of this complex information
lives within the built model object.
It’s not completely a black box:
you CAN force it to divulge its
secrets, such as these figures, but
its real value is using its
knowledge to make predictions.
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Work done to address specific
need

Software suite in R that automates and greatly
simplifies delta log-normal Boosted Regression Tree
spatial modelling.

Powerful statistical modelling technique made
accessible to potential users in the ecological and
modelling communities.

Input data: Ray survey CPUE
disaggregated into:
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Input data: Environmental covariates
(Depth, distance to shore, temperature,
salinity, current speed, substrate grain size)
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Acquiring global coastlines with gbm.basemap

mybounds <- c(range(samples|,3]),range(samplesl,2]))
gbm.basemap(bounds = mybounds)

ResOIUtion 1’ ”Coarsen i
Resolution 5, “full”

GBM = Gradient Boosting Machine / Generalised
Boosted Models: EXACTLY the same thing as BRT
Boosted Regressions Trees, but a different name.
And all the parameters have different name.

No idea why this issue exists.



A B C
1 LONGITUDE LATITUDE Abundance?

11 -6.11245  52.75085
12 -6.11245  52.7559

1
2 | -6.45765 53.97035 0 I\/l . . h b
B . apping with gbm.map
5 -6.11505 52.7634 0
Bl ous| seras 2 * Mapping function for gridded data
7 .6.1147  52.7636 3
8 -6.11315 53.6292 2 . )
9 -6.1128 53.62605 0 b CCIICUICI"'eS fhe Ce” SlIZze CIU'l'OmCﬂ'lCCI”y
10 .6.1128  54.0279 0
2
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* allows user to alter most elements of the output

Predicted CPUE (numbers per hour): Cuckoo

png(flename = “ExampleMap.png") AR
par(mar = c¢(3.2,3,1.3,0))
gbm.map(x = grids|[,1], y = grids[,2], z = grids[, 3], o
species = “Cuckoo’,
heatcolours 54.0
colournumber ~
landcol £
Irnapbgllck &35
egendloc \ £
legendtite — —~ & .
lejback 53.0 e
etc) Wso-10
B74-89
. e
3-45
1.5:=3
0-15
52.0 0-0
&7 -6 -5 -4 -3 -2

Longitude (°W)



Abundance predictions with gbm.auto

samples <- read.csv(“samples.csVv")

grids <- read.csv(“grids.csv")

gbm.auto(samples = samples, grids = grids, expvar = 4.6, resvar = 3)

* Uses gbm.basemap, gbm.map, gbm.rsb and various other functions
* Allows the user to specify which data distribution to use

* can check for zero-inflation and transform data to use the delta-
lognormal model on long-tailed zero-inflated data

* automatically loops through the user-set combinations of parameters
and multiple response variables
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Explanatory Variables Response Variables Zero Inflated? Bin_BRT.tc2.1r0.001.bf0.5

Year

!F.blacknnse

Season
Lon
Surface.T
Bottom.T
Surface.DO
Bottom.DO
Start.Depth

Bin_BRT _simp predictors kept (ordered)

Season
Depth.Bin
Year
Surface.T
Bottom.T

dayleng‘th Best Binary BRT variables Relative Influence (Bin} Biggest Interactions (Bin)
35.54444975 Start.Depth and Lon. Size: 1.18

Start.Depth

Bottom.DO g tace.p0

Lomn

daylength
Bottom.DO
Bottom.T
Surface.T

Depth.Bin

TRUE

trees: 1400

Best Binary BRT
Model combo: Bin_BRT.tc2.1r0.001.bf0.5

Training Data Correlation: 0.588134932326192 Model CV score: 0.588134932326192

CV Mean Deviance: 1.082804166000306
CV Deviance SE: 0.0478621899131645
CV Mean Correlation: 0.27417021183714

Training data AUC score: 0.8827
CV AUC score: 0.6773
CV AUC se: 0.053158350558925824

CV Correlation SE: 0.0886817493754063

Bin_BRT_simp predictors dropped Simplified Binary BRT stats
Surface.DO
Start.Depth

16.89503265 Bottom.DO and Surface.DO. Size: 0.25

15.41003404
9.070503635
7.959983717

7.63123564
3.350914543

2.09227579
1.417916858
0.427653375

trees: 2600

Training Data Correlation: 0.564892280252173
CV Mean Deviance: 1.04457745738497

CV Deviance 5E: 0.0497216516054207

CV Mean Correlation: 0.305782672406723

CV Correlation SE: 0.0775726580103382

The area under the ROC curve can be integrated and interpreted as an Area Under
the Curve (AUC) value that has a range from 0.5 to 1. Using this metric, a value of
one indicates perfect discrimination of probabilities between presence and absence
samples and a value of 0.5 indicates that model discrimination is no better than
random. While models with AUC values greater than 0.6 are considered useful
(Parisien and Moritz 2009), values greater than 0.8 are considered very good, and
above greater than 0.9 excellent (Lane et al. 2009).



Visual assessment of data quality and
representativeness with gbm.rsb

Representativeness Surface Builder

* Compares frequency distribution of the
explanatory variables from the ‘gridg ™ =ermeres osmmeremn e

d q Tq Will.h Those from Th e ‘Sd m p I es’ ;ZZZZ : [l a » . Unrepresentativeness: ThO:I"IbaCk
dqll.q %oooo{ % 200 B A oy
10000 100 ( ¥ ‘ \ 9

* Differences summed into a score e s
indicating how well the samples data
qutures _I_hqll_ Vq riqble’s fUII rqnge HistogramofTej'lpi.(alllrishSea) 35:)-IiftogramofTempeiatures(survey) §53A0
* Calculated for every cell in ‘grids’ s I
* Exported to csv & mapped with o ﬂ =1l s
gbm.map ioe e cros o onae

¢ Highel‘ values = pOoOor coverage — be
more cautious with conclusions at that
pOinT. gbm.rsb(samples, grids, expvarnames, gridslat, gridsion)




Calculating the coefficient of variation of predicted
abundance with gbm.loop

Coefficient of Variation: Cuckoo

* Repeats gbm.auto run a user- 55.0
specified number of times

* Calculates and plots the minimum, >45

average, maximum, and variance of
the variable influence values (bar
plot data) g

253.5
* Calculates and plots the minimum, 5

average, and maximum partial -
dependence values (line plot data)
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* Calculates coefficient of variation for 525
predicted abundance map.
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* Produces map and csv files g g g P z 5
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Mature Females

Cuckoo

Predicted CPUE (numbers per hour): All Species
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Generating MPAs with gbm.valuemap

gbm.valuemap(dbase = mydata, goodcols = c¢(5,3,6,4), badcols = 7, conservecol = 8, HRMSY = ¢(0.14,0.08,0.08,0.15))
* Predictive maps only addresses half the problem.

* Conservation plans are prioritisations: must consider socioeconomic metrics e.g. fishing
effort

* Need biologically-derived MPA candidates. Maximum Sustainable Yield (MSY) principle
of escapement biomass: percentage to retain annually to conserve the stock, Harvest Rate

at MSY (HR,,c,).

* Predicted abundance map of rays Vs map of fishing effort = areas to preferentially
conserve, and areas to avoid closing to minimise effort displacement.

* Cumulatively add cells sorted from most to least preferable to close until you have an
MPA big enough to protect the most conservationally valuable species’ HR,,<y (“species
‘I ")

* Do the same with Species 2, but with Species 1’s MPA already in place, i.e. you just grow
Species 1’s MPA until it protects Species 2. Repeat for all species.

* Instead of ‘abundance Vs effort’ prioritisation sort, can sort by effort only, abundance
only, or conservation map areas from gbm.cons



Predi¢ ( Per Species Closed Area: Combo

55.0 55.0 55.0 55.0
54.5 54.5 54.5 54.5
54.0 54.0 54.0 54.0
z z = =
Q Q Q -
:%53 5 :%53 5 353 5 %53 5
5 & = =
| - — ©
-
53.0 53.0 53.0 53.0
52.5 52.5 52.5 55 5 40.5% E closed
' I Thornback
B Spotted
B Cuckoo
52.0 52.0 52.0 BBlonde
52.0
-7 -7 -7
L -6 -5 -4 B 2
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Pre-run parameter scoping with gbm.bfcheck

gbm.bfcheck(samples = samples, resvar = 3)

* Calculates the minimum binary and Gaussian BRT bag fraction sizes

* Users can check and optimise BFs before starting gbm.auto runs



Conclusions

* Easily-usable and feature-rich resource.
* Data-poor or rich; single or multiple species or subsets.

* Users can easily produce predicted abundance maps, explanatory variable
diagnoses, conservation priority area maps and area closure proposals, with little
work or prior knowledge required.

* Facilitate and expedite conservation of data-poor species using MPAs that
balance competing priorities with the full engagement of stakeholders.

* Customisability means users can reduce analyses to the essentials they require.

* Users can quickly generate high quality outputs for presentations and journals,
without lengthy /repeated formatting.

* Output maps and plots can drive collaborative MPA siting discussions with
stakeholders and fisheries managers.



“Prey Mr Babbage, if you put into the machine
wrong figures, will right answers come out?”

Please
don’t.
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Marine Institute
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e
Distance to Shore

0 - 2000

2000 - 4000
4000 - a000
6000 - 3000
8000 - 10000
10000 - 12000
12000 - 14000
14000 - 16000
16000 - 13000
18000 - 20000
20000 - 22000
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26000 - 23000
28000 - 30000
30000 - 32000
32000 - 34000
34000 - 38000
36000 - 33000
38000 - 40000
40000 - 42000
42000 - 44000
44000 - 45000
45000 - 43000
43000 - 50000
50000 - 52000
22000 - 53824

* 8 080 88

Distance from shore: map calculation



Grain Size

*  0.0471375

* 0.126875

* 0.169375

* 0,211875
0.254375
0.3340625
0.349009375
0.429296375
0.669575125
0.909359375
0.931773435
0.9535875
0.975601563

1.3

16

2.350325125

256

* 36190625

* 64

Grain size: ~250m minimum resolution, British Geological Survey (converted from

sediment type classifications)



Permission to use graphics kindly
granted by Marc Dando
wildlifeillustrator.com

Thornback ray
(Raja clavata):
140cm max length

Blonde ray (Raja ,
brachyura): 154cm
max length

The study '
subject species

Cuckoo ray (Leucoraja
naevus): 92cm max length

\ Spotted ray (Raja montagui): ™58
78cm max length
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Ray abundance at 1447 survey sites: ICES DATRAS, 1993-2012




At what point does making
complex stats increasingly
available risk a glut of experts
testing and improving the
models?

People in glass houses shouldn’t throw stones...
maybe Elith et al would say the same about me!




ECOGRAPHY 29: 129151, 2006

Novel methods improve prediction of species’ distributions from

occurrence data

Jane Elith*, Catherine H. Graham®, Robert P. Anderson, Miroslay Dudik, Simog 28
Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li,
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ToDo List: improvements, additions, bugs

* Parallelisation: the core BRT function is a sequential process i.e. single
thread only, but could run both halves of a delta model simultaneously.

* OS compatibility
* Swept area AND Spatial error implicit in input data
* Processing time estimate

* Parameter optimisation
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What I’'m doing next

* Farallon Institute, Petaluma, CA

* Developing a population dynamics model on forage fish (central
northern stock of northern anchovy) abundance in relation to
environmental conditions , fisheries exploitation & trophic (predator-
prey) interactions in the Southern California Current System using
available acoustic & trawl survey data (CalCOFI)

* Explain state shifts

* Non-stationary model, Bayesian TMB2 Spatial? Range expansion /
contraction

* Sardine eat anchovy eggs...



Thanks. Any questions?

Permission to use ray graphics klndly granted by Marc Dando wildlifeillustrator.com . All maps by

@GMIT

Entire project coded in R & requires minimal R knowledge github.com/SimonDedman/gbm.autc

Code / figures / contact / everything: simondedman.com
simondedman(@gmail.com

Ecological Modelling 312 (2015) 77—90: Modelling abundance hotspots for data-poor Irish Sea rays

Fishes 2 12 (20] 7) 1—22: Advanced spatial modelling to inform management of data-poor juvenile & adult female rays

ICES Journal of Marine Science 74:2 (2017) 576-587: Towards a flexible Decision Support Tool
for MSY-based Marine Protected Area design for skates and rays

PLoS ONE 12(12): e0188955: Gbm.auto: a software tool to simplify spatial modelling and Marine Protected Area planning
Bdngley et al.: PLoS ONE (in Review): Delineation and Mapping of Coastal Shark Habitat within Pamlico Sound, NC
Burke et al.: In Prep: Spatial analysis review of BRUVs data

Grimmel et al.: In Prep: Assessment of Faunal Communities and Ecosystem Interactions within a Shallow-water Lagoon using BRUVs

Please let me know criticisms /praise /suggestions by email or in person. Thanks!

Thanks to Dr Chuck
Bangley, beta tester
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