

Diagnostics in Stock Synthesis

Ian Taylor

CAPAM Diagnostics Workshop 2 February 2022

Overview: four places to get diagnostics for SS3

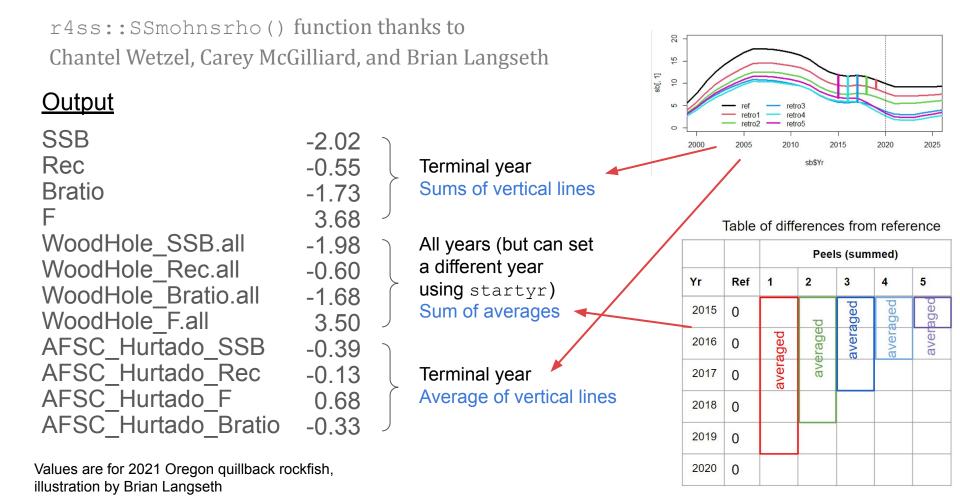
- Diagnostics in Stock Synthesis output
- Diagnostics from core r4ss functions
- Additional r4ss functions for diagnostics that aren't called by SS plots()
- Additional R packages

Overview: diagnostics in SS3 output

- Messages during run time and warning files provide initial check for problems
- Improved messages about
 parameters on bounds in ADMB on
 the way thanks to Cole Monnahan
 <u>github.com/admb-project/admb</u>
 /issues/221

```
Estimating row 44 out of 44 for hessian
5 468 -log(L): 402.017 Spbio: 2524.55 1987.88
 469 -log(L): 402.017 Spbio: 2524.55 1987.88
5 470 -log(L): 402.017 Spbio: 2524.55 1987.88
5 471 -log(L): 402.017 Spbio: 2524.55 1987.88
do benchmark and forecast if requested in sdphase
got Fspr 0.107403 0.5
got Btgt 0.0722269 0.4
got Fmsy 0.0763359 702.688
 inished benchmark, forecast, and sdreporting
5 472 -log(L): 402.017 Spbio: 2524.55 1987.88
In final section
Finish time: Tue Feb 01 12:52:04 2022
Elapsed time: 0 hours, 3 minutes, 37 seconds.
Iterations: 472 -log(L): 402.017
Final gradient: 7.17341e-05
 finished COVAR.SSO
finished forecast
finished StdDev quantities
 write mcmc headers
finished posteriors
finished SS_summary.sso
finished SS_summary.sso
writing big output now
finished report.sso
data.ss_new with N replicates: 1 finished
Write new starter file
Write new forecast file
Write new control file
dynamic Bzero: finished
SPR profile: finished
Global MSY: finished
```

!! Run has completed !!

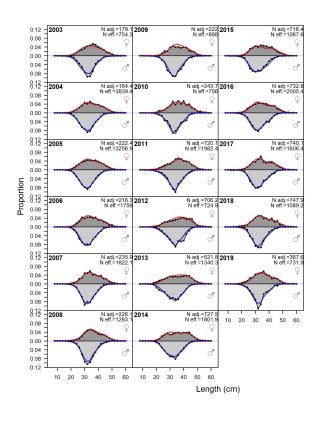

Overview: diagnostics from core r4ss functions

- The SS_output() function reads model output from text files into a list in R
 - Some diagnostics messages are reported while it runs, but these are buried in a sea of too much information and routinely ignored
 - Returns tables with information such as related to parameters on bounds, data weighting, and tuning variances
- The SS plots () function creates a default set of plots
 - Results displayed in HTML format
 - Additional tables of diagnostics slowly getting moved into the HTML view where they are easier to access
 - Figures probably too numerous but it's easier to add than take away
 - Can be posted to web via github pages (IATTC did similar in 2016, now easier)

Overview: diagnostics from additional functions

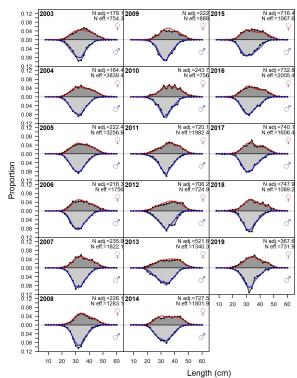
- Some diagnostic plots require calling independent r4ss functions
- These either haven't been integrated into set called by SS plots() or involve comparing across multiple models
- Examples:
 - jitters
 - likelihood profiles
 - retrospectives
 - Mohn's rho

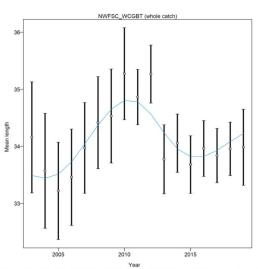
Side note: multiple versions of Mohn's rho



Overview: diagnostics from additional R packages

- ss3diags, see next talk by Megumi Oshima
 - see github.com/jabbamodel/ss3diags
 - generalized to work with any SS3 model
- Pacific Hake stock assessment
 - see github.com/pacific-hake/hake-assessment
 - includes Bayesian analogs to many standard r4ss plots of MLE output
 - meets specific needs of annual assessment
 - o longstanding interest in generalizing Bayesian diagnostics (see github.com/r4ss/r4ss/issues/11) but there are still few fully Bayesian SS3 models
- Empirical selectivity
 - hopefully will get integrated into r4ss eventually
- Numerous agencies have their own R scripts or packages



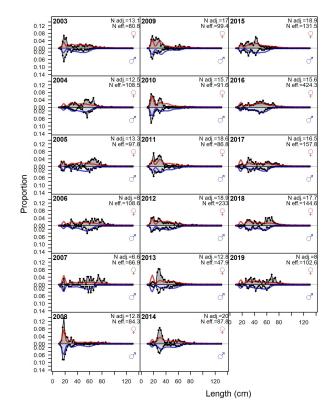

Time series of mean length or age in comp data

- Fit to these length comps is great
- Not clear how these data influence the model other than informing selectivity (and estimation of R0 as shown by likelihood profiles)

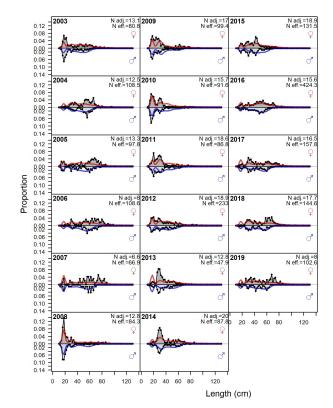
Time series of mean length or age in comp data

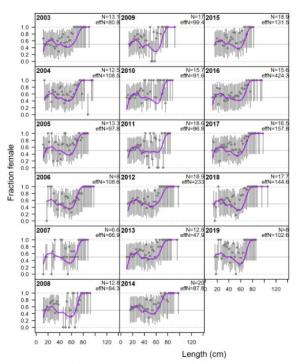
Mean length for NWFSC_WCGBT with 95% confidence intervals based on current samples sizes.

Francis data weighting method TA1.8: thinner intervals (with capped ends) show result of further adjusting sample sizes based on suggested multiplier (with 95% interval) for len data from NWFSC_WCGBT: 1.0022 (0.5392-3.6767)


For more info, see

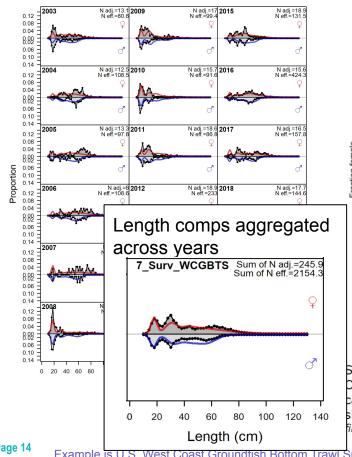
Francis, R.I.C.C. (2011). Data weighting in statistical fisheries stock assessment models. *Can. J. Fish. Aquat. Sci.* 68: 1124-1138. https://doi.org/10.1139/f2011-025 Figure from Francis weighting is valuable to see what information comp data have about recruitment or population scale, regardless of chosen weighting method Would be nice to have a option to compare fit of multiple models to these

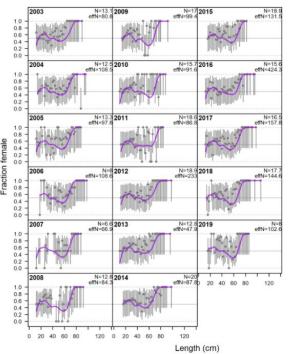

time series


Diagnostic in r4ss thanks to Chris Francis and André Punt

Sex ratios in composition data

Sex ratios in composition data


- Sex ratio plots provide a different view of the comp data
- Helps judge
 reasonableness of
 estimates of
 dimorphic growth
- Helps identify when sex-specific selectivity is needed

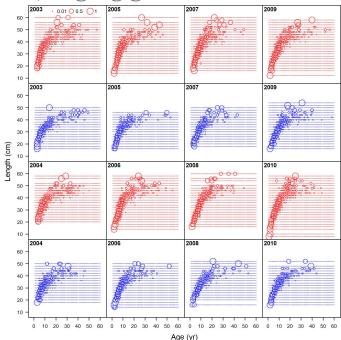

Sex ratios for length comps, whole catch, 7_Surv_WCGBTS. Observed sex ratios (points) with 75% intervals (vertical lines) calculated as a <u>Jeffreys interval</u> based on the adjusted input sample size. The model expectation is shown in the purple line.

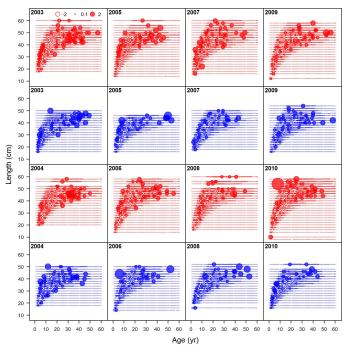
file: sexratio len flt7mkt0.png

Diagnostic in r4ss thanks to Cole Monnahan and Ian Stewart

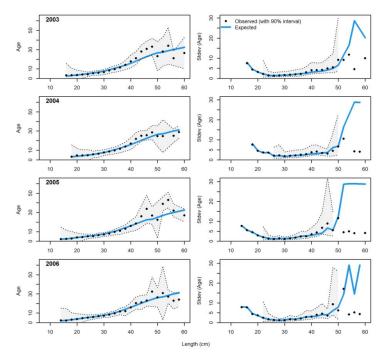
Sex ratios in composition data

Sex ratios for length comps, whole catch, 7 Sur Observed sex ratios (points) with 75% intervals calculated as a Jeffreys interval based on the ad size. The model expectation is shown in the pur ile: sexratio len flt7mkt0.png


- Sex ratio plots provide a different view of the comp data
- Helps judge reasonableness of estimates of dimorphic growth
- Helps identify when sex-specific selectivity is needed
 - Sex ratio of aggregated comps would be useful

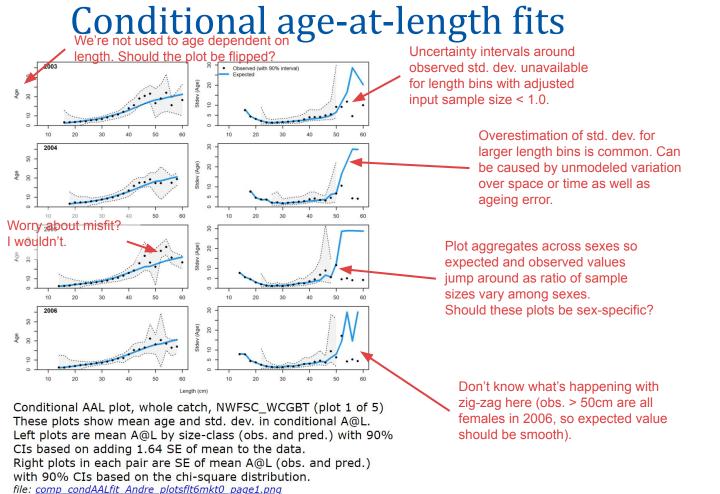

Page 14

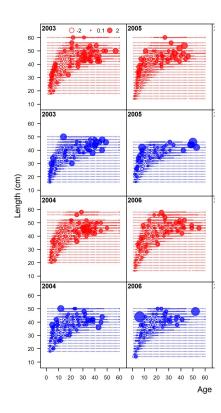
Example is U.S. West Coast Groundtish Bottom Trawl Survey from 2021 lingcod (south) assessment (Kelli Johnson et al.)


Conditional age-at-length fits

- Estimating growth within a model using CAAL is the best way to get accurate estimates of growth and account for uncertainty in those estimates
- Judging goodness of fit is hard

Conditional age-at-length fits

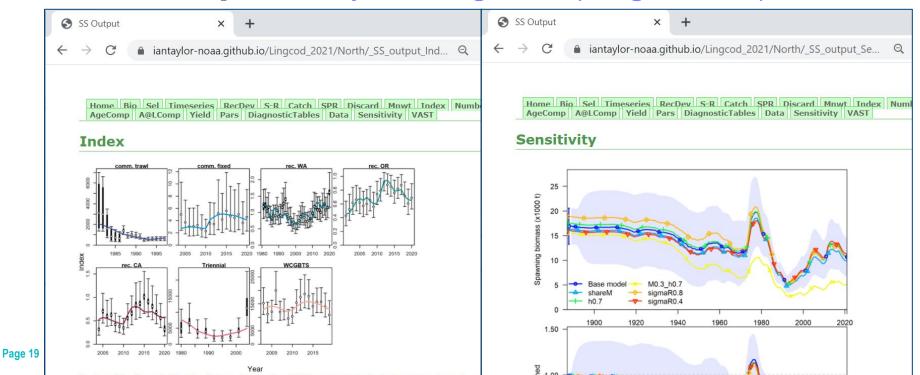



Conditional AAL plot, whole catch, NWFSC WCGBT (plot 1 of 5) These plots show mean age and std. dev. in conditional A@L. Left plots are mean A@L by size-class (obs. and pred.) with 90% CIs based on adding 1.64 SE of mean to the data. Right plots in each pair are SE of mean A@L (obs. and pred.) with 90% CIs based on the chi-square distribution.

file: comp condAALfit Andre plotsflt6mkt0 page1.png

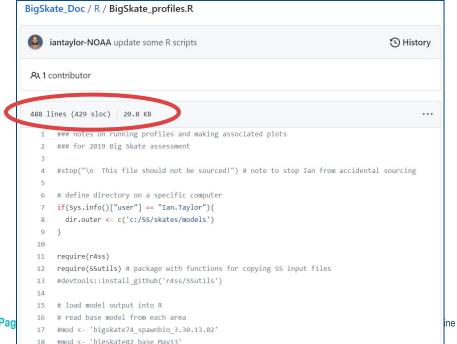
- Length (cm) 2004
- Summarizing in terms of expected and observed mean age and std. dev. provides a useful objective diagnostic
- Diagnostic remains confusing

Diagnostic in r4ss thanks to André Punt



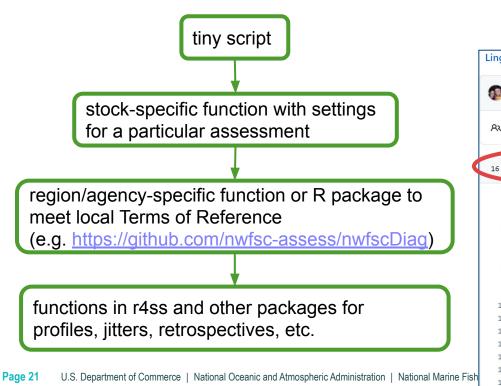
Diagnostic in r4ss thanks to Andre Punt

Future: adding custom figs and posting to web


- Info available later this year
- See example at <u>iantaylor-noaa.github.io/Lingcod 2021/</u>

Future: wrappers for existing functions

Old approach: 488 line script with repeated calls to


```
SS_profile(), SSgetoutput(), SSsummarize(),
SSplotProfile(), and PinerPlot()
```



```
Lingcod_2021 / unfit / diags.R
              kellijohnson-NOAA add both model names to diagnostic script 🗸
                                                                                                  (1) History
         ८३ 1 contributor
         16 lines (13 sloc) 424 Bytes
            1 # Source this file using the command line via
            2 # Rscript --vanilla .\unfit\diags.R 1
            3 # where the 1 at the end is the args you want.
               # so here args could be 1:3
                args <- commandArgs(trailingOnly=TRUE)</pre>
                setwd("c:/stockassessment/lingcod 2021")
                library(devtools)
               load all()
           11
                run_investigatemodel(
                 "2021.n.023.001_fixWAreccatchhistory",
                 # "2021.s.018.001 fixTri3",
                 run = c("profile", "retro", "jitter")[as.numeric(args)]
ne Fish
           16
```

Future: wrappers for existing functions

New approach:


```
Lingcod_2021 / unfit / diags.R
      kellijohnson-NOAA add both model names to diagnostic script 🗸
                                                                                          (1) History
 83 1 contributor
 16 lines (13 sloc) 424 Bytes
        # Source this file using the command line via
       # Rscript --vanilla .\unfit\diags.R 1
        # where the 1 at the end is the args you want.
        # so here args could be 1:3
        args <- commandArgs(trailingOnly=TRUE)
        setwd("c:/stockassessment/lingcod 2021")
        library(devtools)
       load all()
   11
        run investigatemodel(
          "2021.n.023.001_fixWAreccatchhistory",
         # "2021.s.018.001 fixTri3",
   15
         run = c("profile", "retro", "jitter")[as.numeric(args)]
   16
```

Future: wrappers for existing functions

- Drawback of wrapper functions is less control
 - o individual functions allow customization
 - profile fig at right showing choice of alternative states of nature

```
SSplotProfile(...,
  add_cutoff = TRUE,
  cutoff prob = 0.75)
```

- Running one step gives opportunity to do things like dealing with non-converged likelihood profiles
- However, we don't have time for those details
- We can automate some of those fixes

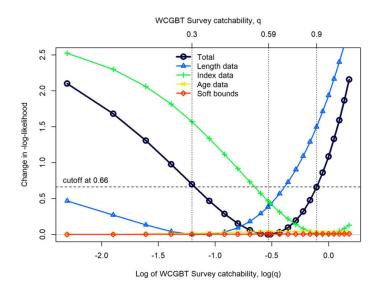


Figure 129. Likelihood profile over log(q) showing contributions of likelihood components. All values are represented as the change relative to the lowest negative log-likelihood for that component within the range of log(q) values shown in the figure.

Future: Adding new diagnostics to r4ss

- Ideal process:
 - create a new issue to discuss design and implementation
 - contribute code in a fork of the r4ss package
 - create a pull request
- Also acceptable:
 - emailed code, scribbles on a napkin, etc.
- See github.com/r4ss/r4ss#contributing-to-r4ss

and Fish. Res. paper associated with 2019 CAPAM workshop

Fisheries Research 239 (2021) 105924 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres

Beyond visualizing catch-at-age models: Lessons learned from the r4ss package about software to support stock assessments

Ian G. Taylor a, *, Kathryn L. Doering b, Kelli F. Johnson a, Chantel R. Wetzel a, Ian J. Stewart c

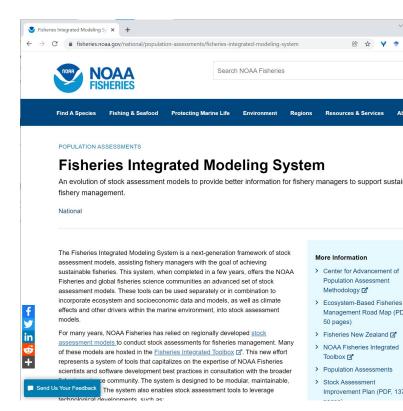
a Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA

b Caelum Research Corporation Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric

Administration, 2725 Montlake Blvd E. Seattle, WA, 98112, USA ^c International Pacific Halibut Commission, 2320 West Commodore Way, Suite 300, Seattle, WA, 98199, USA

Future: creating new independent packages

- See ss3diags <u>github.com/jabbamodel/ss3diags</u>
- Benefits:
 - more flexibility for authors,
 - less dependence on r4ss developers,
 - keeps packages smaller.


• Challenges:

- maintaining compatibility may require more work,
- less visibility than adding diagnostics to established tools,
- 0

Future: FIMS

- NOAA folks, with support from lots of others, are developing a nextgeneration modeling system
- Expected to eventually replace Stock
 Synthesis and various legacy tools
- Model will be coded in in TMB & C++
- Diagnostics will be coded in R
- Developing and refining diagnostics is harder than porting to new platform, so still reasonable to work on additional SS3 diagnostics

https://www.fisheries.noaa.gov/national/

population-assessments/fisheries-integrated-modeling-system

