Use of posterior predictive intervals in complex statistical agestructured assessment models

James lanelli and Paul Spencer

Diagnostics

- Some data preview
- Visual diagnostics

Survey work

NOAA's 2021 bottom trawl survey relative to the average

2021 survey catch rate difference from mean
NOAA's 2021 bottom trawl survey relative to the average

Age composition

- From NOAA's
bottom-trawl survey

Vertical scale is relative to survey population estimate

Age composition

- From NOAA's bottom-trawl survey

Survey transit

- Opportunistic acoustic data

Can show young fish abundance off bottom

Acoustic data

Opportunistically collected from chartered bottomtrawl survey boats The AVO index

Mean backscatte

- 100
- 2000
- 3000
- 4000

2020

Acoustic data

Model details

- Tuning indices
- Acoustic Trawl survey (even years)
- Annual fixed-station bottom trawl survey
- Acoustic vessel of opportunity (AVO index)
- Foreign trawler CPUE (in 1970s)
- Fishery data
- Total catch
- Catch-at-age
- Mean fishery weights-at-age

Model details

- Age specific schedules
- Natural mortality
- Maturity
- Other
- Conditioned on catch biomass (F's estimated)
- Selectivity varies in fishery
- Slightly in surveys
- Ricker
- Projection options built in to evaluate policy trade offs
- Complicated?
- Multiple random-effects models used to process available data

New data impact on model

Data considerations

Name	Updated catch to 2021	2020 fishery age data	Bottom trawl survey	Acoustic from Bottom trawl transits (AVO)
Fishery	X	X		
+ BTS	X	X	X	
AVO	X	X	X	X

Model

- last year
- Catch-age added, 2020
- Add BTS data
- Add AVO

Fishery catch-age

Fit to survey indices

Fit to survey age compositions

Biomass
trend

Diagnostics
Posterior predictive distributions

Base model

Subsample of posterior (from MCMC)

Yellow is the model "predictions" from the posterior
Grey are "simulated" data from posterior (using obs variance)
Black dots are actual obervations

Diagnostics
Posterior predictive distributions

Base model

Diagnostics
Posterior predictive distributions

Alternative model

EBS pollock survey age composition data

Acoustic

 trawl survey

Fishery

model
Alt
Base

Steps as part of ACLIM project

Climate-informed fisheries management: Proposed "on-ramps" and existing coordination

Model selection and prediction of new data?

What things affect FMSY?

$\begin{array}{lllllllll}0.29 & 0.48 & 0.6 & 0.73 & 0.84 & 0.87 & 1.01 & 1.13\end{array}$ $\begin{array}{lllllllll}0.39 & 0.46 & 0.65 & 0.7 & 0.81 & 0.98 & 1.03 & 1.21\end{array}$	0.5	0.61	0.65	0.75	0.9	1.04	1.21	1.23
0.41	0.65	0.73	0.75	0.71	1.06	1.39	1.35	$\begin{array}{llllllllll}0.41 & 0.65 & 0.73 & 0.75 & 0.71 & 1.06 & 1.39 & 1.35\end{array}$ $\begin{array}{llllllll}0.38 & 0.5 & 0.74 & 0.84 & 0.86 & 0.99 & 1.22 & 1.31\end{array}$ $\begin{array}{llllllllll}0.32 & 0.43 & 0.68 & 0.79 & 0.95 & 0.95 & 1.02 & 1.1 \\ 0.32 & 0.47 & 0.56 & 0.75 & 0.89 & 1.07 & 1.09 & 1.24\end{array}$ $\begin{array}{llllllllll}0.37 & 0.59 & 0.63 & 0.62 & 0.78 & 1.03 & 1.17 & 1.25\end{array}$ $\begin{array}{lllllllll}0.4 & 0.51 & 0.64 & 0.7 & 0.73 & 0.89 & 1.04 & 1.25\end{array}$ $\begin{array}{lllllllllll}0.35 & 0.53 & 0.63 & 0.73 & 0.78 & 0.89 & 1.04 & 1.25\end{array}$ $\begin{array}{llllllllll}0.33 & 0.5 & 0.67 & 0.79 & 0.96 & 0.99 & 1.06 & 1.12\end{array}$ $\begin{array}{lllllllll}0.39 & 0.51 & 0.67 & 0.79 & 0.91 & 1.03 & 1.1 & 1.09\end{array}$ $\begin{array}{llllllll}0.49 & 0.55 & 0.65 & 0.77 & 0.86 & 0.95 & 1.08 & 1.2\end{array}$ $\begin{array}{llllllll}0.41 & 0.58 & 0.64 & 0.76 & 0.89 & 0.92 & 1.04 & 1.16\end{array}$ $\begin{array}{lllllllll}0.35 & 0.51 & 0.64 & 0.74 & 0.88 & 0.95 & 1.06 & 1.1\end{array}$ $\begin{array}{lllllllll}0.31 & 0.45 & 0.61 & 0.75 & 0.85 & 0.95 & 1.06 & 1.11\end{array}$ $\begin{array}{lllllllll}0.35 & 0.51 & 0.64 & 0.78 & 0.96 & 1.1 & 1.18 & 1.27\end{array}$ $\begin{array}{llllllll}0.33 & 0.52 & 0.65 & 0.77 & 0.9 & 1.05 & 1.12 & 1.28\end{array}$ $\begin{array}{llllllll}0.34 & 0.53 & 0.7 & 0.88 & 1 & 1.13 & 1.4 & 1.49\end{array}$ $\begin{array}{llllllll}0.38 & 0.49 & 0.66 & 0.92 & 1.12 & 1.26 & 1.37 & 1.59\end{array}$ $\begin{array}{lllllllll}0.29 & 0.51 & 0.67 & 0.81 & 0.98 & 1.22 & 1.35 & 1.52 \\ 0.27 & 0.41 & 0.54 & 0.82 & 0.07 & 1.17 & 1.31 & 1.52\end{array}$ $\begin{array}{lllllllll}0.27 & 0.41 & 0.64 & 0.82 & 0.97 & 1.17 & 1.31 & 1.52 \\ 0.29 & 0.44 & 0.56 & 0.78 & 1.13 & 1.28 & 1.43 & 1.69\end{array}$ $\begin{array}{llllllllll}0.29 & 0.44 & 0.56 & 0.78 & 1.13 & 1.28 & 1.43 & 1.59\end{array}$ $\begin{array}{lllllllll}0.4 & 0.46 & 0.57 & 0.69 & 0.79 & 0.89 & 1.15 & 1.2\end{array}$ $\begin{array}{llllllllll}0.4 & 0.46 & 0.57 & 0.69 & 0.79 & 0.89 & 1.15 & 1.2 \\ 0.41 & 0.53 & 0.56 & 0.65 & 0.73 & 0.8 & 0.94 & 1.04\end{array}$ $\begin{array}{lllllllll}0.4 & .53 & 0.56 \\ 0.4 & 0.5 & 0.65 & 0.69 & 0.75 & 0.83 & 0.89 & 0.91\end{array}$ $\begin{array}{llllllllll}0.38 & 0.47 & 0.57 & 0.73 & 0.81 & 0.85 & 0.9 & 1.05\end{array}$ $\begin{array}{lllllllll}0.42 & 0.57 & 0.64 & 0.76 & 0.88 & 0.96 & 1.01 & 1.06\end{array}$ $\begin{array}{llllllll}0.39 & 0.52 & 0.64 & 0.72 & 0.8 & 0.95 & 1 & 1.06\end{array}$

| 0.17 | 0.35 | 0.43 | 0.67 | 1.02 | 1.13 | 1.2 | 1.38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.24 | 0.36 | 0.49 | 0.58 | 0.72 | 1.07 | 1.12 | 1.01 | $\begin{array}{llllllll}0.24 & 0.36 & 0.49 & 0.58 & 0.72 & 1.07 & 1.12 & 1.01 \\ 0.26 & 0.36 & 0.48 & 0.62 & 0.76 & 1.02 & 1.21 & 1.4\end{array}$ $\begin{array}{lllllllll}0.23 & 0.4 & 0.49 & 0.62 & 0.77 & 0.9 & 1.41 & 1.11\end{array}$ $\begin{array}{llllllll}0.18 & 0.36 & 0.46 & 0.64 & 0.72 & 0.84 & 1 & 1.28\end{array}$ $\begin{array}{llllllll}0.26 & 0.35 & 0.43 & 0.52 & 0.7 & 0.79 & 0.88 & 0.98\end{array}$ $\begin{array}{lllllllll}0.29 & 0.35 & 0.46 & 0.52 & 0.6 & 0.75 & 0.85 & 0.99\end{array}$ $\begin{array}{llllllll}0.17 & 0.37 & 0.44 & 0.52 & 0.62 & 0.66 & 0.92 & 0.92\end{array}$ $\begin{array}{llllllll}0.15 & 0.38 & 0.5 & 0.57 & 0.61 & 0.72 & 0.78 & 1.04\end{array}$ $\begin{array}{lllllllll}0.16 & 0.35 & 0.49 & 0.58 & 0.69 & 0.74 & 0.87 & 0.91\end{array}$ $\begin{array}{lllllllll}0.29 & 0.38 & 0.51 & 0.62 & 0.77 & 0.83 & 0.89 & 0.98\end{array}$ $\begin{array}{llllllll}0.31 & 0.45 & 0.5 & 0.55 & 0.66 & 0.79 & 0.98 & 1.03 \\ 0.27\end{array}$ $\begin{array}{llllllll}0.22 & 0.47 & 0.57 & 0.63 & 0.71 & 0.97 & 1.16 & 1.12\end{array}$ $\begin{array}{llllllll}0.14 & 0.38 & 0.49 & 0.63 & 0.65 & 0.8 & 0.93 & 1.16\end{array}$ $\begin{array}{lllllllll}0.23 & 0.34 & 0.4 & 0.54 & 0.69 & 0.89 & 0.97 & 1.06\end{array}$ $\begin{array}{llllllllll}0.18 & 0.34 & 0.48 & 0.52 & 0.67 & 0.81 & 0.9 & 0.07\end{array}$ $\begin{array}{llllllllll}0.21 & 0.36 & 0.42 & 0.56 & 0.63 & 0.77 & 0.97 & 1\end{array}$ $\begin{array}{llllllllll}0.23 & 0.38 & 0.45 & 0.53 & 0.65 & 0.71 & 0.78 & 0.95\end{array}$ $\begin{array}{llllllllll}0.17 & 0.37 & 0.5 & 0.6 & 0.67 & 0.77 & 0.85 & 0.91\end{array}$ $\begin{array}{lllllllll}0.25 & 0.39 & 0.53 & 0.65 & 0.67 & 0.8 & 0.89 & 0.92\end{array}$ $\begin{array}{llllllll}0.44 & 0.57 & 0.67 & 0.73 & 0.84 & 0.89 & 0.96\end{array}$ $\begin{array}{llllllllll}.29 & 0.48 & 0.55 & 0.68 & 0.76 & 0.79 & 0.94 & 0.95\end{array}$ $\begin{array}{llllllll}0.22 & 0.4 & 0.53 & 0.6 & 0.7 & 0.8 & 0.87 & 0.91\end{array}$ $\begin{array}{lllllllll}0.18 & 0.36 & 0.51 & 0.61 & 0.72 & 0.81 & 0.91 & 1.04\end{array}$ $\begin{array}{llllllllll}0.28 & 0.43 & 0.55 & 0.67 & 0.77 & 0.84 & 0.92 & 1.08\end{array}$ $\begin{array}{llllllll}0.23 & 0.41 & 0.52 & 0.64 & 0.76 & 0.86 & 0.92 & 1.07\end{array}$ $\begin{array}{llllllll}0.22 & 0.41 & 0.55 & 0.68 & 0.84 & 0.91 & 0.96 & 1.17\end{array}$ $\begin{array}{llllllll}0.24 & 0.4 & 0.54 & 0.68 & 0.9 & 0.98 & 1.02 & 1.11\end{array}$ $\begin{array}{llllllll}0.23 & 0.42 & 0.55 & 0.65 & 0.8 & 1 & 1.1 & 1.15\end{array}$ $\begin{array}{llllllllllll}0.2 & 0.36 & 0.53 & 0.67 & 0.81 & 0.95 & 1.21 & 1.23\end{array}$ $\begin{array}{lllllllll}0.22 & 0.36 & 0.48 & 0.6 & 0.66 & 0.89 & 0.98 & 1.12\end{array}$ $\begin{array}{lllllllll}0.28 & 0.39 & 0.52 & 0.6 & 0.72 & 0.81 & 1.05 & 1.08\end{array}$ $\begin{array}{llllllllll}0.23 & 0.44 & 0.51 & 0.61 & 0.7 & 0.78 & 0.84 & 0.93\end{array}$ $\begin{array}{lllllllll}0.19 & 0.4 & 0.53 & 0.6 & 0.69 & 0.74 & 0.82 & 0.83\end{array}$ $\begin{array}{lllllllll}0.2 & 0.37 & 0.5 & 0.61 & 0.7 & 0.75 & 0.84 & 0.88\end{array}$ $\begin{array}{lllllllll}0.23 & 0.43 & 0.54 & 0.63 & 0.71 & 0.79 & 0.84 & 0.93\end{array}$

$\begin{array}{llllllll}0.21 & 0.37 & 0.49 & 0.61 & 0.7 & 0.77 & 0.89 & 1.03\end{array}$
$\begin{array}{lllllllll}0.35 & 0.45 & 0.59 & 0.68 & 1.07 & 1.11 & 1.45 & 1.57\end{array}$ $\begin{array}{lllllllll}0.35 & 0.45 & 0.59 & 0.68 & 1.07 & 1.11 & 1.45 & 1.57\end{array}$ $\begin{array}{llllllll}0.39 & 0.47 & 0.57 & 0.71 & 0.79 & 1.18 & 1.22 & 1.55 \\ 0.44 & 0.53 & 0.62 & 0.72 & 0.85 & 0.93 & 1.32 & 1.34\end{array}$ $\begin{array}{llllllll}0.44 & 0.53 & 0.62 & 0.72 & 0.85 & 0.93 & 1.32 & 1.34 \\ 0.46 & 0.55 & 0.65 & 0.73 & 0.83 & 0.96 & 1.04 & 1.41\end{array}$ $\begin{array}{llllllll}0.46 & 0.55 \\ 0.38 & 0.53 & 0.63 & 0.72 & 0.8 & 0.9 & 1.03 & 1.1 \\ 0.4 & 0.4 & 0.7 & 0.7 & 0.1 & 0.9 & 0.8 & 1.1\end{array}$ $\begin{array}{llllllll}0.42 & 0.47 & 0.62 & 0.72 & 0.81 & 0.89 & 0.98 & 1.1\end{array}$ $\begin{array}{llllllll}0.39 & 0.51 & 0.55 & 0.7 & 0.8 & 0.89 & 0.97 & 1.06\end{array}$ $\begin{array}{llllllll}0.33 & 0.47 & 0.59 & 0.64 & 0.79 & 0.89 & 0.97 & 1.04\end{array}$ $\begin{array}{llllllll}0.29 & 0.46 & 0.61 & 0.73 & 0.78 & 0.92 & 1.01 & 1.08\end{array}$ $\begin{array}{lllllllll}0.28 & 0.4 & 0.58 & 0.72 & 0.84 & 0.89 & 1.02 & 1.11\end{array}$ $\begin{array}{llllllll}0.4 & 0.43 & 0.57 & 0.74 & 0.89 & 1 & 1.04 & 1.16\end{array}$ $\begin{array}{llllllll}0.48 & 0.61 & 0.65 & 0.79 & 0.96 & 1.1 & 1.2 & 1.22\end{array}$ $\begin{array}{llllllll}0.4 & 0.6 & 0.74 & 0.78 & 0.91 & 1.08 & 1.21 & 1.3 \\ 0.32 & 0.49 & 0.7 & 0.84 & 0.8 & 1 & 1.17 & 1.29\end{array}$ $\begin{array}{llllllll}0.32 & 0.49 & 0.7 & 0.84 & 0.88 & 1 & 1.17 & 1.29 \\ 0.37 & 0.41 & 0.59 & 0.8 & 0.93 & 0.97 & 1.09 & 1.25\end{array}$ $\begin{array}{lllllllll}0.37 & 0.41 & 0.59 & 0.8 & 0.93 & 0.97 & 1.09 & 1.25\end{array}$ $\begin{array}{llllllllllll}0.44 & 0.53 & 0.58 & 0.76 & 0.58 & 1.01 & 1.13 & 1.16\end{array}$ $\begin{array}{llllllllll}0.4 & 0.53 & 0.58 & 0.63 & 0.81 & 1.01 & 1.13 & 1.16\end{array}$ $\begin{array}{lllllllll}0.39 & 0.5 & 0.64 & 0.68 & 0.73 & 0.91 & 1.1 & 1.22\end{array}$ $\begin{array}{lllllllll}0.42 & 0.54 & 0.67 & 0.79 & 0.92 & 0.95 & 0.99 & 1.15\end{array}$ $\begin{array}{llllllll}0.43 & 0.54 & 0.66 & 0.79 & 0.9 & 1.03 & 1.06 & 1.09\end{array}$ $\begin{array}{llllllll}0.45 & 0.53 & 0.65 & 0.77 & 0.9 & 1.01 & 1.13 & 1.15\end{array}$ $\begin{array}{llllllll}0.38 & 0.56 & 0.65 & 0.76 & 0.88 & 1 & 1.11 & 1.22\end{array}$ $\begin{array}{llllllll}0.32 & 0.47 & 0.66 & 0.75 & 0.86 & 0.98 & 1.1 & 1.19\end{array}$ $\begin{array}{llllllll}0.3 & 0.43 & 0.59 & 0.77 & 0.86 & 0.97 & 1.08 & 1.19\end{array}$ $\begin{array}{llllllll}0.33 & 0.5 & 0.64 & 0.8 & 0.98 & 1.06 & 1.16 & 1.26\end{array}$ $\begin{array}{lllllllll}0.24 & 0.46 & 0.64 & 0.78 & 0.94 & 1.11 & 1.19 & 1.28\end{array}$ $\begin{array}{lllllllll}0.34 & 0.51 & 0.74 & 0.92 & 1.06 & 1.2 & 1.36 & 1.42\end{array}$ $\begin{array}{llllllll}0.3 & 0.51 & 0.69 & 0.92 & 1.1 & 1.23 & 1.36 & 1.52\end{array}$ $\begin{array}{lllllllll}0.27 & 0.45 & 0.66 & 0.84 & 1.07 & 1.24 & 1.37 & 1.49 \\ 0.31 & 0.42 & 0.6 & 0.82 & 0.99 & 1.22 & 1.38 & 1.49\end{array}$ $\begin{array}{llllllll}0.31 & 0.42 & 0.6 & 0.82 & 0.99 & 1.22 & 1.38 & 1.49 \\ 0.37 & 0.47 & 0.58 & 0.77 & 0.98 & 1.15 & 1.37 & 1.52\end{array}$ $\begin{array}{lllllllllll}0.45 & 0.51 & 0.58 & 0.73 & 0.91 & 1.12 & 1.38 & 1.49\end{array}$ $\begin{array}{lllllllll}0.44 & 0.49 & 0.55 & 0.66 & 0.77 & 0.95 & 1.15 & 1.32\end{array}$ $\begin{array}{lllllllll}0.39 & 0.53 & 0.58 & 0.64 & 0.75 & 0.86 & 1.04 & 1.23\end{array}$ $\begin{array}{llllllll}0.39 & 0.58 & 0.64 & 0.75 & 0.86 & 1.04 & 1.23 \\ 0.39 & 0.5 & 0.64 & 0.69 & 0.75 & 0.85 & 0.96 & 1.13\end{array}$ $\begin{array}{lllllllll}0.39 & 0.47 & 0.58 & 0.72 & 0.77 & 0.83 & 0.93 & 1.03\end{array}$ $\begin{array}{llllllll}0.4 & 0.55 & 0.64 & 0.76 & 0.89 & 0.94 & 0.99 & 1.08\end{array}$ $\begin{array}{lllllllll}0.36 & 0.53 & 0.69 & 0.78 & 0.89 & 1.02 & 1.06 & 1.1\end{array}$ $\begin{array}{llllllll}0.36 & 0.5 & 0.67 & 0.83 & 0.91 & 1.02 & 1.15 & 1.18\end{array}$ $\begin{array}{llllllll}0.36 & 0.5 & 0.63 & 0.8 & 0.96 & 1.04 & 1.14 & 1.26\end{array}$ $\begin{array}{llllllll}0.36 & 0.5 & 0.63 & 0.77 & 0.94 & 1.09 & 1.17 & 1.26\end{array}$

Anomaly

0.2
0.0
-0.2

EBS pollock survey age composition data

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 44

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.
It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.

Contributions

- Argued some aspects of complexity
- Demonstrated some graphical diagnostics
- Offered next steps towards using these approaches for model selection

