

The Logistic-normal as a tool to diagnose model misspecification?

Nicholas Fisch, Ed Camp, Kyle Shertzer, Rob Ahrens, and Mark Maunder

CAPAM & IATTC Workshop on Model Diagnostics in Integrated Stock Assessments Jan 31, 2022

Correlations and Overdispersion

Observation / Sampling Error

Correlations and Overdispersion

Model Misspecification / Process Error •

> Fig. 3. Illustration of the relationship between the observed (solid line) and expected (broken line) catch length frequencies in a year in which the true fishery selectivity is shifted to the right of that assumed in the stock assessment model.

HERsg2

2

з

000

5 6

0

6 8

O

-4

2

12-

HERhg2

• 0

0.

0000

12

R.I.C.Chris Francis / Fisheries Research 192 (2017) 5-15

R.I.C.C. Francis / Fisheries Research 151 (2014) 70-84

HOKwc4

Dirichlet-multinomial

$$L\left(\boldsymbol{\pi},\boldsymbol{\theta}|\boldsymbol{\tilde{\pi}},n\right) = \frac{\Gamma(n+1)}{\prod_{a=1}^{a_{max}}\Gamma(n\tilde{\pi}_{a}+1)} \frac{\Gamma\left(\boldsymbol{\theta}n\right)}{\Gamma\left(n+\boldsymbol{\theta}n\right)} \prod_{a=1}^{a_{max}} \frac{\Gamma\left(n\tilde{\pi}_{a}+\boldsymbol{\theta}N\pi_{a}\right)}{\Gamma\left(\boldsymbol{\theta}n\pi_{a}\right)}$$
(10)

which has effective sample size:

$$n_{eff} = \frac{1+\theta n}{1+\theta} = \frac{1}{1+\theta} + n\frac{\theta}{1+\theta}$$
(11)

Logistic-normal

 $\mathbf{X} \sim MVN(\log(\mathbf{P}), \mathbf{C})$

- Variance-covariance matrix can be parameterized
 - Simple method is using AR1 process
- Can create positive and negative correlations in composition residual structure

0X

a

Methods: Simulation Operating Model

- Fine-scale spatially explicit model

 Spatial Cells are 0.1°(~10km²)
- Age-structured (Ages 0-20+)
- Based on Red Snapper Life History
 - Most Parameters taken from SEDAR Assessment
- Models age-based movement and dynamic effort distribution
 - Sampling done at scale of spatial cell to create correlations

Simulated Observation Error Correlations and Overdispersion

Ο \cap \circ \cap Ο \cap \cap 0 0 \cap \circ 0 0 \cap \cap \cap 0 0 0 0 0 0 0 \cap \cap \circ • • O \cap 0 0 0 \cap \cap S Ο

Methods: Estimation Model

 Fit standard SCAA models to 1000 replicates of data generated from Operating Model

• Fit to harvest, fishery index, fishery composition, survey index, and survey composition

- 100yr time series
- Estimating unfished rec, rec devs, fishing intensity, selectivity params, and catchabilities
 - Known M, h, and variance terms
- Will be misspecified in Fishery Selectivity

Performance Criteria (Terminal Year)

- Depletion (Biomass/Unfished)
- Exploitation Rate (Harvest/Biomass)

Performance Statistic

• Relative Error (Estimated – True)/True

Treatments: Misspecification in Selectivity

- Different degrees of model misspecification
 - Based on the form of Fishery Selectivity

Treatments: Composition Sample Size

Sample Size of Composition Data

• Varied the number of fish sampled/aged for fishery composition data

Results: Minimal PE

Min PE

Results: Max PE

The Logistic-normal as a Diagnostic?

The Logistic-normal as a Diagnostic?

The Logistic-normal, through its ability to specify a flexible variance-covariance matrix (incorporating positive correlation structure), is better able to account for increased variability and correlations in residuals as a function of model misspecification than is the Dirichletmultinomial.

 Conditional on an adequate sample size, differences between a model fit with the Dirichlet-multinomial and the Logisticnormal suggest misspecification in the model

Empirical Follow Up

0

401

Figure 1. Overview map of the area in the Northeast Pacific Ocean occupied by Pacific Hake. Commo areas referred to in this document are shown.

Pacific Hake

Methods

Cobia (1986-2017)

- Recreational Harvest
- Recreational Age Composition
- Commercial Harvest
- Recreational Headboat Index
- Pooled commercial length composition
 - Age-structured
 - Run in a Bayesian framework

Pacific Hake (1966-2020)

- Fishery Harvest
- Fishery Age Composition
- Survey Index data
- Survey Age composition
- Diagnostics explored
 - Retrospective Analyses
 - Fit to data
 - Runs tests
 - SDNRs
 - Hindcasting

Results – Assessment Output

Retrospective Analysis - Cobia

P- Mohn's rho
Mean relative divergence
from full model

LN outside of "Rule of Thumb" range from Hurtado-Ferro et al., (2015)

Retrospective Analysis – Pacific Hake

 No retrospective statistics drew a red flag

Fit to Index data – Pacific Hake

- SDNRs
 - DM = 1.04 (0.65, 1.45)
 - LN = 1.03 (0.65,1.42)
- Estimated Additive SD
 - DM = 0.27 (0.14, 0.44)
 - LN = 0.34 (0.16, 0.58)
- Runs test
 - DM = 19% of MCMC iterations failed
 - LN = 4% of MCMC iterations failed

Fit to Composition data – Pacific Hake

- RMSE
 - LN allowing for more residual variance
- Runs test
 - DM 22%

– LN 41%

Observed Residual Correlations

Model free Hindcasting

- Fitting model with reduced data and predicting those data.
 - It is suggested that a model which predicts better than the naïve prediction "passes" diagnostic (Carvalho et al., 2021)

	h	DM	LN
Hindcast Index	3	0.905	2.024
Hindcast Fishery Composition	3	1.08	0.86

- More evidence that the Logistic-normal seems to break down at small sample sizes for composition data.
- Tough to corroborate LN as a diagnostic tool based on Hake results
 - Accounting for process error in index fit
 - Variability in reliability of different diagnostics
 - "No individual diagnostic was sufficient to ensure high power of detecting all forms of misspecification tested. However, applying multiple diagnostic tests did increase the power to detect misspecification." – Carvalho et al., (2017)

DM	LN
\checkmark	\checkmark
\checkmark	\checkmark
\sim	\sim
\checkmark	X
×	\checkmark
	DM

Cautions

- This is new...
 - Simulation study was based on one fish life history, one exploitation history, one type of misspecification..., was quite data rich
- LN performance seems to be highly conditional on sample size
 - How to relate to sim study?
- How much of a difference constitutes diagnostic pass/fail?
- Zero-data

Acknowledgements

• Ed Camp, Kyle Shertzer, and Rob

Ahrens.

Mark Maunder

Contents lists available at ScienceDirect

Fisheries Research

journal homepage: www.elsevier.com/locate/fishres

Assessing likelihoods for fitting composition data within stock assessments, with emphasis on different degrees of process and observation error

Nicholas Fisch^{a,*}, Ed Camp^a, Kyle Shertzer^c, Robert Ahrens^b

^a Fisheries and Aquatic Sciences, School of Forests, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, USA
 ^b National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Building 176, Honolulu, HI 96818, USA
 ^c National Marine Fisheries Service, Southeast Fisheries Science Center, 101 Pivers Island Road, Beaufort, NC 28516, USA

Relative Difference

Model Misspecification / Treatment of Error

• All of our models are approximations of reality and thus are guaranteed to be misspecified...

Where is this misspecification?

• Types of misspecification

Francis (2014; 2017)

- Sampling error
- Process error
 - Process variation
 - Model misspecification

CAPAM Workshop Intro

- Sampling error
- Process variation
- Model structure uncertainty
- Parameter estimation uncertainty

Hulson et al., (2012)

- Measurement error
- Observation error
- Process error
- Model-specification error

Maunder and Piner (2015)

- Sampling error
- Observation model
 misspecification
- System dynamics misspecification