Likelihood functions for including CPUE based indices of abundance in stock assessment models

Mark Maunder
Inter-American tropical tuna Commission
Outline

• Current approach
• Indices from spatio-temporal models
 • Age/length
• Practicalities
• Catch composition
Current approach

• Total Catch
 • Know without error
 • Fit to catch using a lognormal likelihood with small sd

• Catch composition data
 • Independent of index
 • Multinomial (or similar) likelihood
 • Sample size semi-arbitrarily fixed or estimated

• Index of abundance
 • Aggregated across ages/size
 • Fit using a lognormal likelihood
 • sd semi-arbitrarily fixed or estimated
Current approach

\[\mathcal{L}(\text{parameter}|\text{data}) = \text{Multi(composition, parameters)} \times \ln \mathcal{N}(\text{CPUE, parameters}) \times \ln \mathcal{N}(\text{catch, parameters}) \times \ldots. \]
Indices from spatio-temporal models

- Joint time and age/size index
- Estimated variance-covariance matrix
- Fit using a multivariate distribution (e.g. normal or lognormal)
- Use Estimated variance-covariance matrix in likelihood
- How to deal with unmodeled process variation and model misspecification
Practicalities

• General models don’t have multivariate likelihood
• Independent age/size specific indices
 • May be too many lengths
• Aggregated index and composition likelihoods
Catch composition

• Calculated in spatio-temporal model using same data
 • Index composition weighted by CPUE
 • Catch composition weighted by catch
• Joint time, age/size, index, and catch
• Estimated variance-covariance matrix
• Fit using a multivariate distribution (e.g. normal or lognormal)
• Use Estimated variance-covariance matrix in likelihood
• How to deal with unmodeled process variation and model misspecification
 • Are data weighting issues enough to treat it independently?