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Outline

• State-space assessment models

• Process error in different parts of assessment models

• Correlation (in processes and observations)

• Basic techniques and tools

• Model validation

• Robust methods in state-space models

• Conclusions
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State-space assessment models

What

• Assessment model with at least one unobserved random variable

• Typically one or more time series of unobserved random variables

• Here I will consider models where (N,F) are unobserved random variables

Why

• Describe time varying quantities

• Uses only a few model parameters

• Rigorous statistical framework (quantification of process and observation uncertainty,

statistical tests, simple convergence criteria)

Great..., but really why

• Only model type that actually estimates a prediction mechanism!
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Illustration of the three types of models
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Only one model type can predict
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Recruitment

• Frequently enter models either as free parameters (R1, . . . , RY ), or via some S-R

relationship:

Ry = SR(SSBy−1)

• Free parameters recruitment may be too fluctuating, or subjectively penalized

• S-R relationship may not match observations, so subjective deviance distribution

In state-space models:

• A stochastic process is formulated, e.g. as:

logRy = logSR(SSBy−1) + εy , where εy ∼ N (0, σ2
R)

• Variance parameter σ2
R is objectively estimated via maximum likelihood

• Prediction is straight forward
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Survival

• Models use the stock equation:

Na+1,y+1 = Naye
−Fay−May

• Even with perfect knowledge of Fay and May we should still expect some uncertainty

In state-space models:

• Fay and May are considered rates in a process, e.g. as:

logNa+1,y+1 = logNay − Fay −May + ξay , where ξay ∼ N (0, σ2
S)

• Can also be formulated such that Na+1,y+1 < Nay always. Here considered a ‘feature’

• Very small σ2
S not necessarily a problem

• Large σ2
S or one-sided deviations from stock equation can be used to diagnose problems
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Fishing

• Different approaches in use to define Fay, e.g:

• Deterministic (assuming Cay know without error) possibly with ad-hoc smoothing

• Multiplicative Fay = Safy

• Block wise multiplicative Fa,y = Safy with separate Sa in time blocks

• Splines with fixed degree of smoothness or penalized deviances

In state-space models:

• Define Fy = (F1y, . . . , FAy)

• Formulate a process model for Fy, e.g. as:

logFy+1 = logFy + ψy , where ψy ∼ N (0,Σ)

• Time-varying selectivity is a side-effect (in this formulation)

• Notice that we can set up correlated Fay processes
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Suggested options for correlated process

• Remember:

logFy+1 = logFy + ψy , where ψy ∼ N (0,Σ)

• For all combination of ages (a 6= ã):

A) Parallel: Σa,ã =
√

Σa,aΣã,ã

B) Independent: Σa,ã = 0

C) Compound symmetry: Σa,ã = ρ
√

Σa,aΣã,ã

D) AR(1): Σa,ã = ρ|a−ã|
√

Σa,aΣã,ã

• Now let’s see which one is better.

~anielsen/index.html


0.0 0.2 0.4 0.6 0.8 1.0

130

140

150

160

170

ρ

−
lo

g 
L M

ρ̂D
●

ρ̂C
●

●

●

ρB

ρA

North Sea cod: Profile likelihood for the ρ-parameter for models C and D, ρ = 1 corre-

sponds to model A, and ρ = 0 corresponds to model B.
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Evolving selectivity — North Sea Cod
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stockassessment.org, nscod2015−ass01−dome−6, r5172
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Minor comments on data weighting

• Notice that in state-space models we actually have more components to balance.

– The usual data sources

– The process (a.k.a. what data collectively say about each observation)

• That is helpful in obtaining an objective weighting

• Model validation is important

• Also validating parameter identification (simulation studies)
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Correlation — what effects should be expected

Compared to a model with independent process increments in F and independent obser-

vations we should expect

• Correlation in process leads to more fluctuating process

• Correlation in observation leads to smoother process

• Correlation in observation may give more uncertainty in historic period, but less

in predictions
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Smoothing is important

• Too much smoothing will bias the signal

• Too little smoothing will drown the signal in noise

• Correct ammount will help you look ahead
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• Correct amount should not be subjective

• State-space models are optimized exactly to predict

• Difficulty in comparing models comes from some models inability to predict
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Ad hoc smoothing should be avoided

• These differences are not small and theoretical

• There are no objective way to choose between these two deterministic approaches

• There should really be an objective criteria. A statistical framework.
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Missing data
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• Prediction ability also means that it is easy to handle missing data
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Models with unobserved random variables

• We have:

Observed random variables: y

Unobserved random variables: u

Parameters (θ) in model: (y, u) ∼ D(θ)
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 0.6 

• How do we estimate our parameters when some of our observations are not observed?
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Models with unobserved random variables — 2

• The banana is only an intermediate calculation

1: Joint model (banana) is determined

from model parameters θ

2: Marginal model is calculated from

joint by integration

3: Marginal is matched to data as always

• Imagine the distribution D(θ) is described by

a likelihood function L(y, u, θ), then:

LM (y, θ) =
∫
L(y, u, θ)du

is the marginal likelihood.

y (observed)

 0.2 
 0.4 

 0.6 

• So apart from that annoying ∼ 103-dimensional integral we do what we always do.
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Ways to solve the required integral
∫
L(y, u, θ)du

Kalman filter

• Clever sequential algorithm

• For linear Gaussian systems (in its pure form)

• Requires initial assumptions

Laplace approximation∫
L(y, u, θ)du ≈

∫
exp(2. ord. Taylor of logL around û)du

• Notice the approximation

• The last integral is know as normalization constant in multivariate Gaussian

• Fast in AD Model Builder — even faster in Template Model Builder

MCMC approximation

• Simulate Markov chain with posterior as its equilibrium

• Slow in complex models

• Difficult to judge convergence

• As precise as our patience allow
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Template Model Builder (TMB)

• Developed by Kasper Kristensen

• AD Model Builder inspired R-package

• Implements Laplace approximation for random effects

• Automatic sparseness detection

• Parallelism at three levels

– Internally for matrix calculations

– In user templates

– From R (e.g. via parallel package)

• Closest possible integration with R

• Free, open source and available from http://tmb-project.orga

aDetails in:

Kristensen K, Nielsen A, Berg C.W, Skaug H.J and Bell B (2015). TMB: Automatic Differentiation and Laplace

Approximation. ArXiv e-print; in press, Journal of Statistical Software, http://arxiv.org/abs/1509.00660
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Template Model Builder components

• Based on carefully selected, well supported, open source projects

• Interfaced with a minimum of extra code

R

TMB

User Template

Matrix

TMB++

CHOLMOD

Eigen

CppAD

BLAS

• Most of the extra code is for automatic sparseness detection
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Timings!

Example Time (TMB) Speedup (TMB vs ADMB)

longlinreg 11.3 0.9

mvrw 0.3 97.9

nmix 1.2 26.2

orange big 5.3 51.3

sam 3.1 60.8
sdv multi 11.8 37.8

socatt 1.6 6.9

spatial 8.3 1.5

thetalog 0.3 22.8
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Even scales better
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So what could we possibly worry about?

• Model validation

– Check that parameters are identifiable

– Standard residuals are not supposed to be independent

• Too conservative process

– Could potentially dampen large unusual jumps

– No problem if jumps are seen historically (the variance will just be large)

– No problem if the model structure allows for it
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Model validation

Problem

• In these models residuals calculated as ri = (yi − ŷi)/σi are not supposed to be

independent

Two options are:

One-step-ahead residuals: For each observation yi, i = 2 . . . n

• Use model to predict yi ONLY from observations y1 . . . yi−1

• Use residual: Σ
− 1

2

i|i−1(yi − ŷi|i−1)

Single joint sample: For given model parameters θ

• If (Y, U) is distributed according to joint pdf. L(y, u)

• Observed y is then a sample from marginal distribution with pdf.
∫
L(y, u)du

• Generate one sample u? from conditional distribution of U |Y = y

• Then the set (y, u?) is a sample from joint distribution of (Y,U)

• Assumed distribution of u? can be validated by standard tests
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Residual plot

Wrong (yi − ŷi)/σi Right (one-step-ahead)
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Single joint sample

Wrong (using est. RE) Right (joint sample) Right. Model wrong
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Robust methods

• Reminder from AD Model Builder manual

Standard Standard with outlier Robust with outlier

• Standard model observations have pdf: φ
(x−µ

σ

)
1
σ

• Robust model observations have pdf:(
(1− p)φ

(
x− µ
σ

)
+ pψ

(
x− µ
σ

))
1

σ

• Where φ is pdf of N(0,1) and ψ is pdf of heavy-tailed distribution.
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Robust estimation in state-space assessment

• Observational model

– To guard against wrong observations

– Replace log-normal observation likelihood with robust version

• Recruitment process

– In standard model logRy = log SR(SSBy−1) + εy, where εy follows Gaussian

– Some stocks have occasional unusual large unexplained recruitment events

– Replace distribution of εy with robust version

• Fishing mortality process

– In standard model logFy = logFy−1 + τy, where τy follows Gaussian

– Hopefully we should know if F changes dramatically, but if we don’t...

– Replace distribution of τy with robust version

• Survival process (similar but not tested here).
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Robust increments — does exactly what we want

Time

Observations
Gaussian
Robust
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Robust increments — Laplace approximation works

Time

Observations
Gaussian
Robust
Robust via MCMC
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Be careful with Laplace approximation

Time

Observations
Gaussian
Robust
Robust via MCMC
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Robustifying w.r.t. observed catch (Haddock)
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stockassessment.org, SISAM−haddock−for−figs, r2219

• Makes the model tolerant of outliers
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Robustifying w.r.t. recruitment spikes (Haddock)
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stockassessment.org, SISAM−haddock−for−figs, r2219

• Comparing Gaussian (gray) with robust - no visual difference.

• Gaussian process assumptions were not restricting recruitment.
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Checking Laplace approximation — all good
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stockassessment.org, /home/andni/Downloads/SISAM−haddock−for−figs, 

• Comparing Gaussian (gray) with robust (black) with robust via MCMC (red).
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Robustifying w.r.t. fishing mortality (Haddock)
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• Implies a big change in one years recruitment

• To accommodate the change in R, Fa=1 changed a lot in those years
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Conclusion

• The natural framework for assessment is models with process errors.

– We are observing time series

– Are interested in unobserved processes (Nt and Ft)

– Time-varying quanties are common

– Is important to be able to predict

• Gives simple solutions to otherwise difficult issues

– Time varying selectivity

– Missing data

– Correct level of ”smoothing”

• Correlation structure is important

– to get weighting correct between observations and process

– to get weighting correct between different data sources

– Structures are objectively compared

• TMB is exactly the tool we need

• Model validation requires a bit of extra care, but is doable.
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• State-space assessment models can allow for big jumps

– No problem if jumps are seen historically

– In purely Gaussian models unexpected jumps (following a long sequence of small)

requires informative data

– Robust methods can prepare the process for the unexpected (like insurence)

• Lot of work still ahead

– Expanding to more kinds of data

– Improving process formulations

– Improving observational likelihoods

• The goal should be to improve these components and thereby eliminiate the need for

ad hoc solutions
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Appendix
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Notice we have already seen this

• In the Poisson distribution the variance is equal to the mean, which is an assumption

that is not always valid.

• Consider the model:

Yi ∼ Pois(λi), where λi ∼ Γ

(
n,

1− φ
φ

)
0 < φ < 1

• It can be shown that:

Yi ∼ Nbinom(n, φ)

• Notice:

– No λ in marginal likelihood for Y

– Analytical integration is not the typical case
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Model

States are the random variables that we don’t observe (Na,y, Fa,y)(
log(Ny)

log(Fy)

)
= T

(
log(Ny−1)

log(Fy−1)

)
+ ηy

Observations are the random variables that we do observe (Ca,y, I
(s)
a,y)(

log(Cy)

log(I
(s)
y )

)
= O

(
Ny

Fy

)
+ εy

Model and parameters are what describes the distribution of states and observations

through T , O, ηy, and εy.

Parameters: Survey catchabilities, S-R parameters, process and observation variances.

All model equation are as expected:

• Standard stock equation

• Standard stock recruitment (B-H, Ricker, or RW)

• Standard equations for total landings and survey indices
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The Laplace approximation

• We need to calculate the difficult integral

LM (θ, y) =

∫
Rq
L(θ, u, y)du

• So we set up an approximation of `(θ, u, y) = logL(θ, u, y)

`(θ, u, y) ≈ `(θ, ûθ, y)− 1

2
(u− ûθ)t

(
−`′′uu(θ, u, y)|u=ûθ

)
(u− ûθ)

• Which (for given θ) is the 2. order Taylor approximation around:

ûθ = argmax
u

L(θ, u, y)
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• With this approximation we can calculate:

LM (θ, y) =

∫
Rq
L(θ, u, y)du

≈
∫
Rq
e`(θ,ûθ,y)− 1

2
(u−ûθ)t(−`′′uu(θ,u,y)|u=ûθ)(u−ûθ)du

= L(θ, ûθ, y)

∫
Rq
e−

1
2

(u−ûθ)t(−`′′uu(θ,u,y)|u=ûθ)(u−ûθ)du

= L(θ, ûθ, y)

√
(2π)q

| (−`′′uu(θ, u, y)|u=ûθ) |

• In the last step we remember the normalizing constant for a multivariate normal, and

that |A−1| = 1/|A|.

• Taking the logarithm we get:

`M (θ, y) ≈ `(θ, ûθ, y)− 1

2
log(|

(
−`′′uu(θ, u, y)|u=ûθ

)
|)+q

2
log(2π)
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Laplace approximation work flow

0. Initialize θ to some arbitrary value θ0

1. With current value for θ optimize joint likelihood w.r.t. u to get ûθ and corresponding

Hessian H(ûθ).

2. Use ûθ and H(ûθ) to approximate `M (θ)

3. Compute value and gradient of `M (θ)

4. If the gradient is “>ε” set θ to a different value and go to 1.

Notice the huge number of — possibly high dimensional — optimizations that are required.
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Back to: Random walk plus noise

– λi = λi−1 + ηi

– Yi = λi + εi

– where i = 1 . . . 50, ηi ∼ N (0, σ2
λ), and εi ∼ N (0, σ2

Y ) all independent.
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But we can construct the joint likelihood

• The joint likelihood contributions from the random effects:

(λ1 − λ◦) ∼ N(0, σ2
λ)

(λ2 − λ1) ∼ N(0, σ2
λ)

...

(λ50 − λ49) ∼ N(0, σ2
λ)

• The joint likelihood contributions from the observations:

y1 ∼ N(λ1, σ
2)

y2 ∼ N(λ2, σ
2)

...

y50 ∼ N(λ50, σ
2)
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