A seasonal spatio-temporal model of summer flounder on the Northeast shelf

Charles Perretti¹, James Thorson² ¹NMFS, NEFSC, Woods Hole, MA ²NMFS, NWFSC, Seattle, WA CAPAM spatio-temporal workshop March 1st 2018

Summer flounder, a.k.a. fluke (Paralichthys dentatus)

- Most common recreationally caught flatfish on the East Coast
- Both commercial and recreational fishery is managed by state quota
- Allocation formulas are based on historical catch (and implicitly historical distribution)

credit: M. Terceiro, NMFS

2018 Summer flounder assessment

ToR 3: "Describe ... the stock's spatial distribution (for both juveniles and adults), including any changes over time. Describe factors related to productivity of the stock and any ecosystem factors influencing recruitment."

Objectives

- Is the spatial distribution of the stock changing over time?
- Are there differences between recruits and spawners?
- Are observed changes driven by environmental covariates, size-structure, or something else?

Research approach

- Fit a spatio-temporal model (VAST) to state & federal bottom trawl survey data.
- Why choose VAST?
 - Combining multiple surveys
 - Size-structure
 - Environmental covariates
 - Unexplained variation
 - <u>Seasonal</u> surveys

Data

- NEFSC bottom trawl survey (1976-2017)
- NEAMAP bottom trawl survey (2007-2017)
- MDMF bottom trawl survey (1976-2017, coming soon)
- Spring & Fall

Data

Define size categories as: Recruits: ≤ 30cm Spawners: ≥ 31cm

Individual weight was estimated using the an weight-length relationship (Wigley et al 2003): In W = In a + b In L

Model structure

 $\log(n_{i}) = \omega_{n}(s_{i}, c_{i}) + \gamma_{n}(t_{i}, c_{i}) + \epsilon_{n}(s_{i}, c_{i}, t_{i}) + \sum_{k=1}^{n_{k}} \alpha_{k, c_{i}} x_{k}(s_{i}, t_{i})$

Model structure

$$\log(n_{i}) = \omega_{n}(s_{i}, c_{i}) + \gamma_{n}(t_{i}, c_{i}) + \epsilon_{n}(s_{i}, c_{i}, t_{i}) + \sum_{k=1}^{n_{k}} \alpha_{k, c_{i}} x_{k}(s_{i}, t_{i})$$

$$+ \gamma_n(z_i, c_i) + \epsilon_n(s_i, c_i, z_i) + \sum_{k=1}^{n_k} \alpha_{k, c_i} x_k(s_i, z_i)$$

Season intercept

Seasonal spatiotemporal variation (GRF)

Seasonal covariate effect

Model structure

$$\log(n_{i}) = \omega_{n}(s_{i}, c_{i}) + \gamma_{n}(t_{i}, c_{i}) + \epsilon_{n}(s_{i}, c_{i}, t_{i}) + \sum_{k=1}^{n_{k}} \alpha_{k, c_{i}} x_{k}(s_{i}, t_{i})$$
$$+ \gamma_{n}(z_{i}, c_{i}) + \epsilon_{n}(s_{i}, c_{i}, z_{i}) + \sum_{k=1}^{n_{k}} \alpha_{k, c_{i}} x_{k}(s_{i}, z_{i})$$

Biomass per group

$$\log(w_{i}) = \omega_{w}(s_{i}, c_{i}) + \gamma_{w}(t_{i}, c_{i}) + \epsilon_{w}(s_{i}, c_{i}, t_{i}) + \sum_{k=1}^{n_{k}} \beta_{k, c_{i}} x_{k}(s_{i}, t_{i})$$

+ $\gamma_{w}(z_{i}, c_{i}) + \epsilon_{w}(s_{i}, c_{i}, z_{i}) + \sum_{k=1}^{n_{k}} \beta_{k, c_{i}} x_{k}(s_{i}, z_{i})$

Model setup

Fall encounter probability residuals

Fall catch rate residuals

Eastings

Spring encounter probability residuals

Spring catch

residuals

rate

Eastings

Seasonal patterns Recruits Fall

Spring

Spawners in Fall

Spawners in Spring

Recruits in Fall

Recruits in Spring

Fall

Spring

Center of gravity (Fall)

Center of gravity (Spring)

Fall change in center of gravity

Spring change in center of gravity

Fall

Spring

Preliminary takeaways & next steps

- Consistent evidence of a northward shift in both seasons and size-classes.
- Does not seem to be driven by sizestructure, or changes in total abundance.

 Next-- incorporate environmental covariates

Conceptual challenges

- Are we tracking the same fish in both seasons?
- Does it matter?
- Maybe not for a spatial model, but it might for a population model.
- Confounding between environmental covariates and exploitation patterns?

