

NOAA FISHERIES

Pacific Islands Fisheries Science Center

Incorporating the Spatiotemporal Distribution in the Standardization of Swordfish (*Xiphias gladius*) Catches in the North Pacific Ocean Hawaiibased Longline Fishery

Michelle Sculley¹, Annie Yau², Maia Kapur¹ CAPAM Spatial Workshop February 26 - March 2, 2018

¹JIMAR PIFSC, 1845 Wasp Blvd., Bld 176, Honolulu, HI 96818 ²NMFS PIFSC, 1845 Wasp Blvd., Bld 176, Honolulu, HI 96818

North Pacific Swordfish

- U.S. fisheries for swordfish in the NPO accounted for 53% of the national harvest
- Longline fishery is the largest commercial fishery

- There are differences in effort, area fished, CPUE & size of fish between the shallow- & deep-set longline fisheries.
- Limited access fishery with a maximum number of vessels set at 167
 - 2016: 141 permitted vessels

13 targeted swordfish

Main fishing areas

HI LL fishing effort 1991-1995

Hawaii-Based Longline Fishery

- Data from 1995 2016 from the Pacific Islands Regional Observer Program (PIROP)
- Deep Set :
 - Targets tuna
 - − ≥15 hooks per float
 - Catches small swordfish as bycatch
 - 3-10% observer coverage prior to 2004, 20% after 2004

- Shallow Set:
 - Targets Swordfish
 - <15 hooks per float</p>
 - Catches large swordfish
 - Fishery closed from 2001-2004
 - 100% observer coverage after 2004

Methods for standardizing and analyzing data

- GAM for Swordfish length data
 - Using spline smoothing function for continuous variables
 - Using Lat and Lon, Year, Cluster, Sex, MLD, SST, PDO, SOI as explanatory variables
- Delta-lognormal GLMM for Swordfish CPUE data
 - With vessel as a random effect
 - Using Lat, Year, Quarter, MLD, SST, Lunar Illumination, HPF, Begin Set Time, Bait Type as explanatory variables
- VAST for Swordfish CPUE Data
 - Initial runs with vessel as a random effect but no other covariates (yet)

Length Frequency Analysis

- GAM models for deep and shallow set sectors
- Deep set sector spatial distribution analyzed in two clusters:
 - May-July where larger fish are caught
 - August-April where small fish are caught
- Within each fishery sector:
 - Males vs Female spatial distribution
 - Juvenile vs Adult spatial distribution

Swordfish Eye-fork Length by month

Deep

Shallow

May-July

Adults

Juveniles

Length Composition Analysis

- Size composition data shows clear spatial patterns
 - Large fish further north and small fish further south
 - Clear movement of large fish into the fishing area during spawning season
- A strong recruitment signal in the deep set size data
- Potentially some difference in spatial distribution between adult and juvenile fish

Nominal CPUE – Shallow set Fishery 1995-2000 and 2005-2016 Contours are indicate a CPUE change of 2

Nominal CPUE – Deep set Fishery 1995-2016

Incorporating Spatial Information to Standardized CPUE

- Current method: Include Latitude as an explanatory variable in GLMM
 - Delta-lognormal GLMM model for shallow set early and deep set
 - Spatial and temporal variables, environmental variables, operational variables
 - Lognormal GLMM on positive catches only for late shallow set data

Shallow set Begin Set Time by Year

Deep set Begin Set Time by Year

Exploring VAST with Swordfish CPUE data

CPUE Comparison

Shallow Set

Eastings

Location

Challenges to using VAST

- Adding Covariates for Catchability
 - Operational Data, Lunar Illumination, etc.
- Adding Covariates for Density
 - Oceanographic features: SST, MLD, Frontal Energy
- Unbalanced sampling
 - >95% shallow set catch in Q1 and Q2
- Shallow Set Fishery
 - >99% Positive Encounters after 2005
- Shallow Set Fishery Closures

Future of VAST for swordfish?

• Limited documentation and debugging guides

Warning message: In TMBhelper::Optimize(obj = Obj, lower = TmbList[["Lower"]], upper = TmbList[["Upper"]], : Hessian is not positive definite, so standard errors are not available

• Abundance index is basically the same...so why use VAST?

Red: nCPUE, blue/green sCPUE

