

Can we use random forests for spatiotemporal CPUE modeling? BRIAN STOCK, ERIC WARD, BRICE SEMMENS

Fast (coding vs. runtime vs. interpretation) Replicable (method well-defined, get same answer) Robust (insensitive to distributional assumptions, outliers) Predictive ability (minimal errors, fill in space/time gaps) **Covariate effects** (nonlinear, interactions) **Uncertainty estimates** (with known properties) Specifiable structure (e.g. correlation through time, biology) Unbiased (relative vs. absolute abundance)

- Specifiable structure
- Unbiased

Story 1: Bycatch hotspots

Fast

Replicable

Robust

Predictive ability

Covariate effects

-- Uncertainty estimates

Specifiable structu

Unbiased

Story 2: Total bycatch estimation

- Fast Replicable
 - Robust
 - Predictive ability
 - Covariate effects
- Uncertainty estimates
 - Specifiable structure
 - Unbiased

Story 3: CPUE standardization

Tools for dynamic management

Need map of bycatch "risk"

Tools for dynamic management

Need map of bycatch "risk"

Tools for dynamic management

Need map of bycatch "risk"

- temperature
- depth
- substrate
- spatial field

Q: Which spatial model is best?

1. Research question

Q: Which spatial model is best?

1. Research question

GLM	obs \sim environmental predictors (temp, depth,)
GAM	obs \sim environmental predictors + s(lat,lon)
GMRF	obs ~ environmental predictors + $MVN(0, \Sigma)$
RF	obs \sim environmental predictors + lat + lon

Fisheries observer data

U.S. West Coast Groundfish Trawl

Hawaii Swordfish Longline

Generally: GLM < GAM < GMRF < RF

Generally: GLM < GAM < GMRF < RF

Less clear for rarer species

Generally: GLM < GAM < GMRF < RF

Crude management simulation: 1. Predict bycatch risk at test locations

1. Methods: evaluation

Crude management simulation:

- **1**. Predict bycatch risk at test locations
- 2. Remove X% of fishing effort with highest bycatch risk

1. Methods: evaluation

Crude management simulation:

- 1. Predict bycatch risk at test locations
- 2. Remove X% of fishing effort with highest bycatch risk
- 3. Calculate "prevented" bycatch and target catch (bycatch:target ratio)

1. Methods: evaluation

Covariate effects

Covariate effects

1. Results

Palczewksa (2013), Welling (2016)

How do random forests work?

1. Discussion

Kuhn & Johnson (2013)

How do random forests work?

- Bagging: fit each tree on a Bootstrap sample (~63%) of the data, then Aggregate across trees (~1000+)
- 2. Only consider a random subset (~P/3) of covariates at each split Pr = 0.18 Depth >= 250 fm Pr = 0.12 Temp >= 1 Pr = 0.12 Pr = 0.21 Pr = 0.12 Pr = 0.21 Pr = 0.12 Pr = 0.12Pr = 0.21

Kuhn & Johnson (2013)

1. Discussion

Covariate effects with RF

1. Discussion

Palczewksa (2013), Welling (2016)

Covariate effects with RF

 $Prediction_i = 0.11 = 0.18 - 0.06 (Depth) - 0.01 (Temp)$

1. Discussion

Palczewksa (2013), Welling (2016)

Covariate interactions with RF

Catchability varies by Julian Day

1. Discussion

#2: Total bycatch estimates

Need estimates of total bycatch / discards

- Rarely observe 100% of fishing
- Often observe ~20%

#2: Total bycatch estimates

"Ratio estimator":

$$B_{unobs} = T_{unobs} \frac{B_{obs}}{T_{obs}}$$

S Assumes bycatch prop. to target catch / effort

Use a spatial model instead

Cross-validation using dataset with 100% coverage:

- 1. Choose 20% observed trips
- 2. Fit spatial model
- 3. Predict at 80% unobserved
- 4. Compare sum(predictions) to ratio estimator

Spatial models = lower error

... bias in spatial model estimates

Why are random forests biased?

1. Extreme values modeled using average of less-extreme points \rightarrow Regression to the mean

2. Discussion

Zhang & Lu (2012)

Thoughts on RF bias

Bias correction methods:

- Fit linear model in nodes instead of mean ('Cubist')
- Fit second model on RF residuals (Xu 2013)

Bycatch estimates (absolute abundance) vs.

CPUE standardization (relative abundance)

2. Discussion

#3: CPUE data

Eastern Pacific Ocean yellowfin tuna

- 2000-2009 catch + effort
- 1-deg lat/lon bins

Model:

- 2000-2009 catch + effort
- 1-deg lat/lon bins

'ranger' ranger(cpue ~ lat + lon + year, ...)
'grf' regression forest(dat[,covar], Y=dat\$cpue, ...)

CPUE data

Create prediction grid

CPUE data

Predicted mean(CPUE)

Predicted Var(CPUE)

Relative abundance trend

Predicted CV(CPUE)

log(CV) vs. log(Effort)

3. Diagnostics

Standardized residuals

3. Diagnostics

Bias (regression to the mean)

3. Diagnostics

Uncertainty estimates

Need *covariance* between spatiotemporal predictions *Rapidly* evolving... 34,336 citations Breiman (2001)

- 1. Quantile regression forests prediction quantiles ('ranger', 'grf', Meinshausen 2006)
- 2. Jackknife & infinitesimal jackknife standard error ('ranger', Wager et al. 2014)

- 4. Generalized random forests asymp. normal variance est. ('grf', Athey et al. 2017)
- 5. Bayesian additive regression trees full posterior inference ('bayesMachine', 'dbarts', 'BART', Chipman et al. 2010)

3. Discussion

Other thoughts

Multivariate response:

• Include model.matrix as covariates:

Buffer distances to smooth predictions:

3. Discussion

https://github.com/thengl/GeoMLA

Discussion

Fast (coding vs. runtime vs. interpretation) Replicable (method well-defined, get same answer) Robust (insensitive to distributional assumptions, outliers) Predictive ability (minimal errors, fill in space/time gaps) **Covariate effects** (nonlinear, interactions) Uncertainty estimates (with known properties) Specifiable structure (e.g. correlation through time, biology) Unbiased (relative vs. absolute abundance)

Thank you!

SIO

• Brice Semmens

SWFSC

• Tomo Eguchi

NWFSC

- Eric Ward
- Jim Thorson
- Essential Fish Habitat (Blake Feist)
- West Coast Groundfish Observer Program (Jason Jannot)

XSEDE

Extreme Science and Engineering Discovery Environment

Bias-variance tradeoff by species...

More worthwhile for rarer species

Q1: Which spatial model is best?

Goal: prediction

5-fold cross validation repeated 10x

Methods: evaluation

Q1: Which spatial model is best?

Goal: prediction

5-fold cross validation repeated 10x

Binomial

AUC

RMSE, R^2 (pred – obs)

$$\sqrt{rac{\sum_{i=1}^n ({\hat y}_i-y_i)^2}{n}}$$

Methods: evaluation

West Coast Groundfish covariates

Binomial \sim sst + sst² + Positive depth + depth² + distance to rocky substrate + size of rocky patch + in Rockfish Conservation Area + predicted occurrence (survey) + day of year + spatial field

Chapter 2: Bycatch prediction

Shelton et al. (2014)

Hawaii Longline covariates

spatial field

Chapter 2: Bycatch prediction

Shelton et al. (2014)

RF

- + Better at prediction
- + More complex covariate relationships (incl. interactions)
- + Easier to set up and run
- + Not just a "black box"?

GMRF

- + Statistical inference, marginal posteriors for covariate effects
- + Ability to include observation error

Discussion

Variance of predictions

Mean

Discussion

Wager et al. (2014)

Variance of predictions

Variance

Discussion

Wager et al. (2014)

Variance of predictions

Variance Var(ind trees) D)⁶⁴ Latitude (°) 25 30 35 Latitude ($^{\circ}$)

Non-parametric delta method / "infinitesimal jackknife"

Discussion

Wager et al. (2014)