

Guidelines to validating generalized linear mixed models in Template Model Builder using quantile residuals

Andrea Havron¹, Cole Monnahan² Florian Hartig³, Kasper Kristensen⁴, James Thorson²

¹ECS Federal in support of NOAA Fisheries
²Alaska Fisheries Science Center
³University of Regensburg
⁴DTU Comput

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Relevancy to Fishery Stock Assessments

- Stock Assessment models that use TMB:
 - WHAM
 - SAM
 - LIME
- Next Gen Stock Assessment Project: FIMS
 - TMB back-end
 - Random effects functionalities
- Need to establish clear guidelines

Model Selection

- Which model is best?
- Tools: AIC, BIC
- Issues: degrees of freedom

Model Validation

- Do the data meet model assumptions?
- Tools: Residuals
- Issues: Variance

$$r_i = \frac{Y_i - E[Y_i]}{\sqrt{Var[Y_i]}}$$

GLMM Issues:

- Assumes the mean-variance relationship is equal to 1
- Correctly specified model invalidated more than expected
- Difficult to assess heteroscadacity and overdispersion

Quantile Residuals

$$r_i = \varphi^{-1}\{F(Y_i, \Theta)\}$$

 φ^{-1} : cdf inverse of the standard normal distribution $F(Y, \Theta)$: cdf of f(y, Θ)

Dunn & Smyth, 1996.

GOF: Standardizing to N(0,1) or U(0,1)

$$r_i = \frac{Y_i - E[Y_i]}{\sqrt{Var[Y_i]}}$$

$$r_i = \varphi^{-1}\{F(Y_i, \Theta)\}$$

Considerations

- Need closed form solution to cdf
- Need to rotate multivariate to independent univariate (eg. temporal, spatial)

$$f(y;\theta) = \int_{\mathbb{R}} f(y|u;\theta)f(u;\theta)du$$

Conditional Independence

 $y_1 \perp y_2 \mid u$

$f(\mathbf{y}|u;\theta)f(u;\theta)$

Correlated MVN

Scaled to unit variance

Scaled and Rotated

Approximations to the Quantile Residual

TMB

- Analytical calculations
- Laplace approximations of the cdf
- Bayesian approximations of the cdf

DHARMa

Simulation based approximations

Thygesen, U. et al., 2017.

Hartig, F. 2020.

Full Gaussian (FG)	Assumes joint distribution of data and random effects is Gaussian. Applies rotation to transform to univariate space.
OneStepGaussian (OSG)	One-step conditional distribution is approximated with a Gaussian
CDF	One-step conditional distribution is a ratio of Laplace approximations, applied to the log(cdf)
MCMC	Fixed parameters are mapped to MLEs and tmbstan is used to draw a posterior of the random effects

TMB: Full Gaussian Method

 Analytical calculation of quantile residuals when observations are normal

Simplified algorithm:

- 1. Build objnew by adding data to `random'
- 2. Call objnew\$fn() to do inner optimization to get mode of expected data \hat{y} (and RE) given FE
- 3. Apply fancy linear algebra to Hessian to get: $y \sim MVN(\hat{y}, \Sigma)$.
- 4. Rotate raw residuals to get OSA residuals: $r = chol(\Sigma) * (y - \hat{y})$

TMB One-Step Method

 One-step conditional approach using Laplace approximation

Simplified algorithm:

- 1. Map fixed parameters and random effects to MLEs
- 2. Iteratively add observation to subset y_1
- 3. Treat the rest of data as random effects and estimate using the Laplace approximation.
- Calculate the residual as a ratio of the cdf of the subset to the cdf of the subset plus the cdf of the Laplace approximated data

$$U_{i} = \frac{P^{M}(Y_{i} \le y_{i}, Y_{1}^{i-1} = y_{1}^{i-1})}{P^{M}(Y_{1}^{i-1} = y_{1}^{i-1})}$$

$$Y_1^i = (Y_1, \dots, Y_i)$$

TMB MCMC Method

Bayesian simulation approach

Simplified algorithm:

- 1. Map fixed parameters to their MLEs
- 2. Create a new object
- 3. Draw a single posterior from an MCMC chain
- 4. Use the posterior random vector to recalculate the expected value and plug into cdf calculations
- 5. Relies on conditional independence rather than rotation

obj2 <- MakeADFun(data, MLEs, map)
fit <- tmbstan(obj2,iter=warmup+1)
sample <- extract(fit)\$u
mu <- beta0 + u
r <- qnorm(y, mu, sd)</pre>

Conditional	Simulate new observations conditional on the fitted random effects
Unconditional	Simulate new observations given new simulated random effects

DHARMa: the empirical cdf

Source: Florence Hartig, DHARMa package

Conditional simulation example

Unconditional simulation example

- Establish baseline behavior for different quantile residual calculation methods
- Perform GOF tests on correctly specified and mis-specified models
- Develop guidelines around when each method is or is not appropriate to use

Simulation Models

Model name	Model equations	Initial Values	Mis-specification
Linear model	$\begin{aligned} \eta &= X\beta \\ y &\sim N(\eta, \sigma) \end{aligned}$	$X \sim N(0,1)$ $\beta = (4,-5)$ $\sigma = 1$	Lognormal error
Random walk	$ \begin{aligned} \eta_i &= \eta_{i-1} + \mu + \epsilon_i \\ \epsilon_i &\sim N(0,\tau) \\ y &\sim N(\eta,\sigma) \end{aligned} $	$\mu = 0.75$ $\tau = 1$ $\sigma = 1$	Leave out drift term
GLMM	$\begin{split} u_j &\sim N(0,\tau) \\ \eta_{i,j} &= X_i\beta + u_j \\ y &\sim Gamma(\frac{1}{\sigma^2},\mu\sigma^2) \end{split}$	$X \sim U(0,1)$ $\beta = (4,4)$ $\sigma^2 = 0.5$ $\tau^2 = 10$	Missing covariate
Spatial	$\omega \sim GMRF(Q[\kappa, \tau])$ $\eta_i = \beta_0 + \omega_i$ $y \sim Pois(\exp(\eta))$	$\kappa = \frac{\sqrt{8}}{50}$ $\sigma^2 = 2$ $\beta_0 = 0.5$	Lognormal spatial effect: $\eta_i = \beta_0 + \exp(\omega_i)$

For each iteration (i=1000):

- 1. Data (n=100) were simulated for each model case.
- 2. Data were fit to the correctly specified (h0) and mis-specified (h1) models
- 3. OSA residuals were calculated for h0 and h1.
- 4. Simulation residuals were calculated for h0 and h1.
- 5. Steps 3 and 4 were repeated using true parameter values to calculate theoretical residuals.
- 6. GOF p-values were calculated using the KS test.

Correctly specified models

- Expectations:
 - Theoretical uniform
 - Estimated skewed towards 1
 - Pearson skewed towards 0
- Issues:
 - DHARMa unconditional
 - DHARMa conditional (spatial and randomwalk)

Mis-specified models

- Expectations:
 - Estimated skewed towards 0
- Issues:
 - randomwalk mcmc

- Full Gaussian was fastest but also had the strictest assumptions
- The MCMC approach was also fast but tended to be less sensitive to mis-specification
- DHARMa methods were faster than one-step approaches but could not be used when random effects were MVN
- DHARMa methods are generalized so that they can be used when the cdf of the distribution is not well defined
- In general, random effects models are highly flexible and often lack the power needed to detect mis-specification

Decision Tree – Continuous Data

Decision Tree – Discrete or Hurdle Data

- Expand to include other validation tests
- Develop case studies
- Flush out guidelines
- How to validate integrated models?

References

- Dunn, PK & Smyth, GK. 1996. Randomized Quantile Residuals. Journal of Computational and Graphical Statistics. 236-244.
- Hartig, F. 2020. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level /Mixed) Regression Models. <u>https://cran.r-</u> project.org/package=DHARMa.
- Thygesen, U. et al., 2017. Validation of ecological state space models using the Laplace approximation. Environmental and Ecological Sciences. 1-23.