Spéﬁo-temporal models for populations
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Thorson, Shelton, Ward, and Skaug. 2015.
Geostatistical delta-generalized linear
mixed models improve precision for
estimated abundance indices for West
Coast groundfishes. ICESIMS 72:1297-
1310.
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Benefits of single
Spatio-temporal model approach

1. Include biological
mechanism

2. Improved
communication

Habitat
Assessment

Integrated
ecosystem
assessment

3. Similar review
standards and
“burden of proof”




Has been applied to >15 regions worldwide

> devtools::install github ("james-thorson/FishData")
Downloading GitHub repo james-thorson/FishData@master

from URL https://api.github.com/repos/james-thorson/FishData/zipball,
Installing FishData
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Four questions

* How should we impute density in areas with little
data?

e When can we use auxiliary data to separate
changes in fishery catchability and fish density?

 How should we account for non-random
selection of fishing locations?

* How should we process “biological data” in
conjunction with fishery CPUE?




Four questions

* How should we impute density in areas with
little data?




Delta-generalized linear mixed model (Delta-GLMM)

e Delta-model for observations

- . 1_]/(5’1:) ifB=20
Pr(B =b) = {Y(S’ t) X g(B;A(s,t)) ifB>0

— Where y(s, t) is the probability of encountering the species
— g(B; A(s,t)) is a distribution for positive catches
* Spatio-temporal variation in encounter probability
logit(y (s, t)) = a, (t) + w,(s) + &,(s, t)
— ay(t) is the intercept for each year
— Where w, and g, (t) follow a spatial distribution
* Spatio-temporal variation in density
log(A(s, 1)) = ay(t) + wy(s) + &(s,t)
— Where parameters are defined similarly to y (s, t)
* Used to predict local density
d(s,t) = 7(s,t) X A(s, t)

—  Where 7(s, t) and A(s, t) are predictions conditioned on data




Walleye pollock density in

Eastern Bering Sea
(In kg. per square km.)
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Distribution shifts

* Highly variable
distribution for semi-
pelagic species

— Dogfish
— Sablefish
— Hake

* Few clear trends

— Depends on time-
scale

Thorson, Pinsky, and Ward. 2016.
Model-based inference for estimating
shifts in species distribution, area
occupied and centre of gravity.
Methods Ecol. Evol. 7(8): 990-1002.
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Arrowtooth flounder Arrowtooth flounder
Eastern Bering Sea EBS

Northings

1982

Index of abundance

2003

Effective area
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" Thorson, Rindorf, Gao,

Hanselman, and Winker.

7 2016. Density-dependent
- changes in effective area

, occupied for sea-bottom-
| associated marine fishes.

Proc R Soc B 283(1840).

Density-dependent
habitat selection

Do populations shrink their range
when abundance is low?

Average
— Small contraction in range

— Greatest in Eastern Bering Sea

10
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Spatial Correlation

Sparse spatial correlation matrices

— SPDE approximation
— 2D autoregressive process

— Stream network as Ornstein-Uhlenbeck process

Parameter estimation
— Maximum marginal likelihood
e Can use “bias-correction” for empirical Bayes predictions

— Template Model Builder

* Automatic differentiation

* Laplace approximation




Spatial Correlation

Matern correlation

function ~ __Matern correlation function (Scale=1)
- A%
B 05
e v =20.5 2 I
o 2
— Approximately ~ m 10
exponential > = 100
* Y > 00

— Approximately
Gaussian

o Differentiable
lv — 1] times




Spatial Correlation
Stochastic partial differential equation (SPDE)

" SEparabIe for locations in 2D Lindgren, Rue, Lindstrom. 2011.

J R Stat Soc Ser B Stat Methodol
73(4):423-498.

Sample locations Mesh composed of triangles
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Spatial Correlation

Joint distribution
e~MVN(O0,X)
Which can reduce to a linear form:
¥ 1= k*M, + 2k*M; + M,
M, = M1M0_1M1

MO M1 M2

25

25
s
N0
all-
s

20
20
L]
LN BN
[ ]
0
LI B

15
.
O
15

10
.
L]
M
L I ] L BN
L
10
.
.
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
.
.
.
.
.
.
.




Four questions

* When can we use auxiliary data to separate
changes in fishery catchability and fish density?




Vector-autogressive spatio-temporal model

(VAST) Thorson, Fonner, Haltuch, Ono, Winker. (2017)
Accounting for spatiotemporal variation and

Delta-model for observations fisher targeting when estimating abundance
from multispecies fishery data. Canadian
— Same as single-species model Journal of Fisheries and Aquatic Sciences 74,
1794-1807.

Spatio-temporal variation in density

ir 5 dis
log(A) = a(t) + ) Ly(c, NSt f)+ ) Le(c eCsif.t) + ) La(en O, v1)

— Z;];l L, (c;, f)w(s;, f) is spatial covariation

— Z;ﬁl L:(c;, f)e(s;, f,t;) is spatio-temporal covariation

— a; is the intercept for each year
— Where w(f) and &(f, t) follow a spatial distribution with variance of one

— L, L, and Lg are loadings matrices

Used to predict total density
d(s,c,t) = 7(s,c,t) X A(s, c, t)



Fishery-dependent index standardization

e Construct indices from fishery catch rates

E(B,) = FCD

— Where 3rd term in VAST catch equation

* B_ is catch for each species ¢
* (. is catchability
* F_is fishing effort

* D, is density

Goal: Use multispecies data to “account” for fisher
targeting (unexplained variation in catch-rates at a
given location, caused by catchability differences)



Joint species distribution models

Decompose catch rates
E(Cy) = Qp X F, X Dy,

1. Density includes spatial variation and measured habitat variables

] i
log(Dp) = z Ap Pi(s,t) + Z Yp,1(0)x(s, 1)
j=1 =1

2. Fishing effort includes covariation in targeting

K
log(Fp) — z By &k (i)
k=1

3. Catchability includes measured variables (i.e., GPS, plotters, vessel ID, etc.)

M
108(Qp) = ) VpmIm(@)
=1



Joint species distribution models

Decomposing Model
e g Treatment
variation

Initial location choice based on expected
profit

1 i Spatla I vari at|0n In Spatio-temporal adjustments in fishing
location related to changes in relative ex-

d ens Ity Sp?tla| vessel prices of species, input costs, and COV(Dp) = AAT
adjustments regulations over time

— Measurable during
index standardization

Changes in fishing location due to new
information obtained from prior fishing
(e.g., avoiding areas with low catch rates)

2. Variation in fishing
tactics

Fine-scale spatial adjustments to seek a

more favorable species composition and

higher catch rates once catch is observed

at initial location

— Not directly observed
Changes in timing of fishing activity (e.g.,

daytime, nighttime, crepuscular) COV(Fp) = BBT

Changes in fishing operations, e.g.,
bearing and speed

Changes in fishing gear (e.g., bait type,
hook type, mesh size)




Vector-autogressive spatio-temporal model

Simulation testing

e Used simulator that was
independently built
— Generate catches for four species
o 2x2 factorial cross of four

estimation models

— With/without spatial
variation

— With/without residual
targetting

loge(Estimated/ True)
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Case study:

Results

* Fit to data for
Petrale, dover,
sablefish, and
thornyheads

 Account for
targeting via
residual
correlations
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Covariance in catchability

« Cov(Q.) = LsL}

* Dover, Thornyhead,
Sablefish are caught
together

* Winter petrale
fishery is “clean”

Correlation in catchability in VAST

Petrale

Dover -

Thornyhead

Sablefish -

22



Petrale sole index of abundance

Index is plausible:

Q
™

* Survey relative index
* Matches survey = Fishery relative index
O Assessment relative spawning output

2.5

index

* Timing of recovery
consistent with
assessment model

Relative abundance

0.0

1980 1985 1990 1995 2000 2005

Year



Vector-autogressive spatio-temporal model

Conclusions re: VAST

1. Can fit indices using multi-species catch-rate data

2. Residual variation in catch rates at a given location is caused by
differences in catchability

— Covaries among species...

— ... therefore catch composition is informative about catchability for a given species
3. Works well in simulation experiment

4. Provides reasonable index for Winter Petrale fishery off OR/WA

— Corroborated by stock assessment and survey index
5. Uses similar techniques as single-species survey indices

6. Uses Travis-Cl to continuously check that VAST gives identical answers to
SpatialDeltaGLMM for single-species indices



Four questions

e How should we account for non-random
selection of fishing locations?




Preferential sampling
Question

How should we analyze data where the “design” is
not independent of the “response”?

Conn, Thorson, Johnson. (2017) Confronting
preferential sampling when analysing
population distributions: diagnosis and model-

based triage. Methods in Ecology and Evolution
ApproaCh 8, 1535-1546.

* Simulation experiment
— Shows sensitivity to preferential sampling
e Case study application

— Show potential pitfalls of model-based approach



Preferential sampling
Definition
* Population density D
— Unknown abundance in vicinity of location s
e Sampling intensity P
— Probability P(s) that data location s will be available

e Covariates X

— Could affect either density D or Sampling intensity P

Preferential sampling occurs if and only if:
[D,P|X] # [D |X][P|X]



(a) Nonpreferential sample

Preferential sampling

Problem

20 =
=

Causes bias because no L
samples in low-density habitat ~..""

] | | [ ] 1
0-25 0-50 0:75 1-00
Covariate Sampled

® Unsampled

SO I u t i O n (b) Preferential sample

* Jointly model sampling
intensity and density

* Use estimated density to
extrapolate density into
areas with no data




Preferential sampling

Simulation experiment:
* Simulate density
log(l(s)) = By +x(s)B + w(s)
w~MVN(O, X)
e Simulate inclusion probability
logit(v(s)) = B + x(s)B* + Y(s) + bw(s)
PY~MVN(O,X")
* Simulate location of data
— Draw 50 locations s from v(s)

e Simulate data

C(S)~P0isson(/1(s)a(s))



Preferential sampling

Simulation experiment:

Uses areal formulation

— Small differences in notation but
otherwise similar

Three scenarios
— Not preferential: b =0
— Weakly preferential: b =1
— Strongly preferential: b = 3
500 replicates per scenario

— Uses “epsilon bias-correction”

Evaluates error in total abundance

Ntotar = Z A(s)a(s)

Sampling probability (RY)

0-025 -

0-020 -

0:015 -

0:010 -

0-005 -

0-000 -

0 1 2 3 4
Standardized abundance residual

o

w =20



Preferential sampling

(b)  Spatial random effects (&;)
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Preferential sampling

Simulation experiment:

* Biased when ignoring
preferential sampling

— 50% biaswhen b =1
— 150% bias when b = 3

* |ncreased error when

estimating b when b =
0

Proportion relative bias
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Preferential sampling
Case study

e Model selection differs for different criteria

Include Include Number of | Cross-
covariate pref. params. validation

sampling error
No No 5 87.2 99.1 70,738 6,988
No Yes 6 116.2 1.9 43,232 2,778
Yes No 12 38.3 103.0 66,989 20,374
Yes Yes 13 105.3 0.0 40,656 3,664

e AIC selects covariate + preferential sampling

* Cross-validation selects neither one

33



Preferential sampling
Case study

* Showing results for model without preferential sampling

(@)  Seal counts (b)  Modeled abundance
E Abundance
I e 1000

S S 750
= £ ‘
o e 500
Z Z

250

Easting Easting

 BUT: results highly sensitive to model decisions 34



Preferential sampling

Synopsis

Preferential sampling causes bias due to poor extrapolation in
unsampled areas

Joint models can mitigate bias

— True only if the model is correctly specified
Results are sensitive to model specification

— Selected model may differ among criteria

It is possible to implement using package VAST

— Treat sampling intensity as a 2" “species”

— Multivariate dimension reduction could be useful given data from
many different sources



Four questions

 How should we process “biological data” in
conjunction with fishery CPUE?




Spatio-temporal comp-expansion

Question

How to expand subsamples from survey tows?

Approach

— Expand subsamples to biomass for each tow

— Analyze catch for each category using multivariate spatio-
temporal model

— Process variance estimates to calculate “input sample size”

* Input sample size = multinomial sample size with same variance



Spatio-temporal comp-expansion

Details
1. Fit delta-model to numbers n.(i) for each category c

1—p.(0) if B =0

Pr(n.(i) = B) = p. (i) X Lognormal(B|r.(i),062(c)) ifB > 0

2. Predictors in delta-model include spatio-temporal variation
logit(p.(i)) = Bp(c, ti) + 0y (©wy(c, s;) + o (c)ep(c, 54, t1)

log(r (1)) = log(a;) + Br(c, t;) + ar(Owr(c,s;) + Oep (©)&r(c, s, )

3. Assemble index by category

dAc(S; t) = Pc(s,t) X 7.(s,t)

ng

I.(t) = z (a(s) x dc(s, t))

s=1



Spatio-temporal comp-expansion

Details

4. Calculate standard error for proportions

Lo [SELOF 3, SELOF
T e 4 I(t)

SE[. 0] ~

5. Calculate “input sample size” 7(t)
P.(t) (1-R.(0))

T(t) = Median, —— s
SE[B.(1)]




Spatio-temporal comp-expansion

Simulation experiment

e Age-structured spatio-temporal “Operating model” (OM)

— Abundance at age

e = exp(By + wy(s) + ex(s,t)) X exp(—Za) ift=1ora=1
i N,_1(s,t — 1) x exp(—2) ift>1,a>1
— Biomass at age
W,(s,t) = wy(Lo exp(—Ka))"B X exp(wW(s) + &/ (s, t))
— Simulated sampling
pi(a) =1 — exp(—a;SyN,(s;, t))
a;SqNg(s;, t;)
p;i(a)

r;(a) = X Wy (s;, t;)

— Simulated “true” proportion at age

e Ye1(a(s) X Ny(s, £) X Wy(s, 1))
R O RO




Spatio-temporal comp-expansion

Simulation experiment

* Performance criteria
1. Error

2. Confidence interval coverage

nc

) P,
X3() = ) #(t) B0 log (Pig)

c=1

x2(0)
Q(t)=J Chi.squared(ng,)
0

where Q(t) should be uniform



Spatio-temporal comp-expansion

Simulation
results

Design and spatial
provide similar
results

Can track cohorts
through OM and both
EMs

Proportion of biomass
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Spatio-temporal comp- expansmn

Simulation
results

Both are essentially
unbiased (hnumber at
top of each panel)

Error

Spatial has 10-25%
decrease in root-mean-
squared error
(parentheses)
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Spatio-temporal comp-expansion

Simulation results

* Both designh and spatio-
temporal have OK coverage

e Both have an excess of

Q(t) -1

— Replicates where input sample
size is too small!

Proportion
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Spatio-temporal comp-expansion
Lingcod case-study application
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Spatio-temporal comp-expansion

Conclusions

1. Itis computationally feasible to do comp-expansion using
spatio-temporal model

— Can even use 2 cm bins with separate male vs. female
2. Not clear that there’s a big benefit
— Simulation showed a 25% decrease in root-mean-squared error

— Case study showed increase in RMSE

— Case study showed a large impact on assessment results



Four questions

* How should we impute density in areas with little
data?

e When can we use auxiliary data to separate
changes in fishery catchability and fish density?

 How should we account for non-random
selection of fishing locations?

* How should we process “biological data” in
conjunction with fishery CPUE?




Conclusions

We know how to...

Extrapolate density in unsampled areas
Use auxiliary data to identify residual targeting
Account for non-random availability of data

Expand biological (age/length) data within spatio-
temporal models



Conclusions
Next steps

* Explore applications in diverse fisheries

— Different magnitude of missing-data problems

— Different “information content” in multispecies data
e Scale-up to larger problems

— Many high-seas data sets have >10,000,000 observations

— Some regions have substantial variation at <1km resolution

* Integrate multiple data types
— We sometimes have a mix of fishery and survey data

— Fishery data might be presence-only, presence/absence, count, or
biomass-sampling records
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