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Spatio-temporal models for populations

Thorson, Shelton, Ward, and Skaug. 2015. 

Geostatistical delta-generalized linear 

mixed models improve precision for 

estimated abundance indices for West 

Coast groundfishes. ICESJMS  72:1297–

1310.



Benefits of single 
approach

1. Include biological 
mechanism

2. Improved 
communication

3. Similar review 
standards and 
“burden of proof”

Stock 
Assessment

Habitat 
Assessment Integrated 

ecosystem 
assessment

Spatio-temporal model



Has been applied to >15 regions worldwide
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Four questions

• How should we impute density in areas with little 
data? 

• When can we use auxiliary data to separate 
changes in fishery catchability and fish density?

• How should we account for non-random 
selection of fishing locations? 

• How should we process “biological data” in 
conjunction with fishery CPUE?
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Delta-generalized linear mixed model (Delta-GLMM)

• Delta-model for observations

Pr 𝐵 = 𝑏 = ቊ
1 − 𝛾(𝑠, 𝑡) if 𝐵 = 0

𝛾(𝑠, 𝑡) × 𝑔(𝐵; 𝜆(𝑠, 𝑡)) if 𝐵 > 0

– Where 𝛾(𝑠, 𝑡) is the probability of encountering the species

– 𝑔(𝐵; 𝜆(𝑠, 𝑡)) is a distribution for positive catches

• Spatio-temporal variation in encounter probability

logit 𝛾(𝑠, 𝑡) = 𝛼𝛾(𝑡) + 𝜔𝛾(𝑠) + 휀𝛾(𝑠, 𝑡)

– 𝛼𝛾(𝑡) is the intercept for each year

– Where 𝛚𝛾 and 𝛆𝛾(𝑡) follow a spatial distribution

• Spatio-temporal variation in density

log 𝜆(𝑠, 𝑡) = 𝛼𝜆(𝑡) + 𝜔𝜆(𝑠) + 휀𝜆(𝑠, 𝑡)

– Where parameters are defined similarly to 𝛾(𝑠, 𝑡)

• Used to predict local density

መ𝑑 𝑠, 𝑡 = ො𝛾(𝑠, 𝑡) × መ𝜆(𝑠, 𝑡)

– Where ො𝛾(𝑠, 𝑡) and መ𝜆 𝑠, 𝑡 are predictions conditioned on data
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Walleye pollock density in 
Eastern Bering Sea

(ln kg. per square km.)



Abundance indices
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Model-based
Abundance-
weighted average

Distribution shifts

• Highly variable 
distribution for semi-
pelagic species

– Dogfish

– Sablefish

– Hake 

• Few clear trends

– Depends on time-
scale

Thorson, Pinsky, and Ward. 2016. 
Model-based inference for estimating 
shifts in species distribution, area 
occupied and centre of gravity. 
Methods Ecol. Evol. 7(8): 990–1002.



Year
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Density-dependent 
habitat selection

• Do populations shrink their range 
when abundance is low?

• Average

– Small contraction in range

– Greatest in Eastern Bering Sea

Arrowtooth flounder
Eastern Bering Sea

Arrowtooth flounder
EBS
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Thorson, Rindorf, Gao, 
Hanselman, and Winker. 
2016. Density-dependent 
changes in effective area 
occupied for sea-bottom-
associated marine fishes. 
Proc R Soc B 283(1840).



Spatial Correlation
Sparse spatial correlation matrices

– SPDE approximation

– 2D autoregressive process

– Stream network as Ornstein-Uhlenbeck process

Parameter estimation

– Maximum marginal likelihood

• Can use “bias-correction” for empirical Bayes predictions

– Template Model Builder

• Automatic differentiation

• Laplace approximation



Matern correlation 
function

• 𝜈 = 0.5

– Approximately 
exponential

• 𝜈 → ∞

– Approximately 
Gaussian

• Differentiable 
𝜈 − 1 times

Spatial Correlation



Stochastic partial differential equation (SPDE)

– Separable for locations in 2D

Spatial Correlation

Lindgren, Rue, Lindström.  2011. 

J R Stat Soc Ser B Stat Methodol

73(4):423–498.



Spatial Correlation
Joint distribution

𝛆~𝑀𝑉𝑁 0, 𝚺

Which can reduce to a linear form:

𝚺−1 = 𝜅4𝐌0 + 2𝜅2𝐌1 +𝐌2

𝐌2 = 𝐌1𝐌0
−1𝐌1



Four questions

• How should we impute density in areas with little 
data? 

• When can we use auxiliary data to separate 
changes in fishery catchability and fish density?

• How should we account for non-random 
selection of fishing locations? 

• How should we process “biological data” in 
conjunction with fishery CPUE?



Vector-autogressive spatio-temporal model 
(VAST)

• Delta-model for observations

– Same as single-species model

• Spatio-temporal variation in density

log 𝜆𝑖 = 𝛼(𝑡) +

𝑓=1

𝑛𝑓

𝐿𝜔(𝑐𝑖 , 𝑓)𝜔(𝑠𝑖 , 𝑓) +

𝑓=1

𝑛𝑓

𝐿 (𝑐𝑖 , 𝑓)휀(𝑠𝑖 , 𝑓, 𝑡𝑖) +

𝑓=1

𝑛𝑓

𝐿𝛿(𝑐𝑖 , 𝑓)𝛿(𝑓, 𝑣𝑖)

– σ
𝑓=1

𝑛𝑓
𝐿𝜔(𝑐𝑖 , 𝑓)𝜔(𝑠𝑖 , 𝑓) is spatial covariation

– σ
𝑓=1

𝑛𝑓
𝐿 (𝑐𝑖 , 𝑓)휀(𝑠𝑖 , 𝑓, 𝑡𝑖) is spatio-temporal covariation

– 𝛼𝑡 is the intercept for each year

– Where 𝜔(𝑓) and 휀(𝑓, 𝑡) follow a spatial distribution with variance of one

– 𝐿𝜔, 𝐿 , and 𝐿𝛿 are loadings matrices

• Used to predict total density

መ𝑑 𝑠, 𝑐, 𝑡 = ො𝛾(𝑠, 𝑐, 𝑡) × መ𝜆(𝑠, 𝑐, 𝑡)

Thorson, Fonner, Haltuch, Ono, Winker. (2017) 

Accounting for spatiotemporal variation and 

fisher targeting when estimating abundance 

from multispecies fishery data. Canadian 

Journal of Fisheries and Aquatic Sciences 74, 

1794–1807.



Fishery-dependent index standardization

• Construct indices from fishery catch rates

𝔼(𝐵𝑐) = 𝐹𝑐𝐷𝑐𝑄𝑐
– Where

• 𝐵𝑐 is catch for each species 𝑐

• 𝑄𝑐 is catchability

• 𝐹𝑐 is fishing effort

• 𝐷𝑐 is density

Goal: Use multispecies data to “account” for fisher 
targeting (unexplained variation in catch-rates at a 
given location, caused by catchability differences)
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3rd term in VAST catch equation



Decompose catch rates

𝔼(𝐶𝑝) = 𝑄𝑝 × 𝐹𝑝 × 𝐷𝑝

1.   Density includes spatial variation and measured habitat variables 

log 𝐷𝑝 =

𝑗=1

𝐽

𝐴𝑝,𝑗𝜓𝑗 𝑠, 𝑡 +

𝑙=1

𝐿

𝛾𝑝,𝑙(𝑡)𝑥𝑙(𝑠, 𝑡)

2.   Fishing effort includes covariation in targeting

log 𝐹𝑝 = 

𝑘=1

𝐾

𝐵𝑝,𝑘휀𝑘 𝑖

3.   Catchability includes measured variables (i.e., GPS, plotters, vessel ID, etc.)

log 𝑄𝑝 =

𝑙=1

𝑀

𝜈𝑝,𝑚𝑦𝑚(𝑖)

Joint species distribution models
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Decomposing 
variation

1. Spatial variation in 
density

– Measurable during 
index standardization

2. Variation in fishing 
tactics

– Not directly observed

Joint species distribution models
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Mechanisms Model 
Treatment

Spatial 
adjustments

Initial location choice based on expected 
profit

Spatio-temporal adjustments in fishing 
location related to changes in relative ex-
vessel prices of species, input costs,  and 
regulations over time

Changes in fishing location due to new 
information obtained from prior fishing 
(e.g., avoiding areas with low catch rates)

Cov 𝐷𝑝 = 𝐀𝐀𝑇

Tactics

Fine-scale spatial adjustments to seek a 
more favorable species composition and 
higher catch rates once catch is observed 
at initial location 

Changes in timing of fishing activity (e.g., 
daytime, nighttime, crepuscular)

Changes in fishing operations, e.g., 
bearing and speed

Changes in fishing gear (e.g., bait type, 
hook type, mesh size)

Cov 𝐹𝑝 = 𝐁𝐁𝑇



Simulation testing

• Used simulator that was 
independently built

– Generate catches for four species

• 2x2 factorial cross of four 
estimation models

– With/without spatial 
variation

– With/without residual 
targetting

Vector-autogressive spatio-temporal model
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Results

• Fit to data for 
Petrale, dover, 
sablefish, and 
thornyheads

• Account for 
targeting via 
residual 
correlations

21

Case study:  Petrale sole winter fishery



Covariance in catchability
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Correlation in catchability in VAST• Cov 𝑄𝑐 = 𝑳𝜹𝑳𝜹
𝑻

• Dover, Thornyhead, 
Sablefish are caught 
together

• Winter petrale 
fishery is “clean”



Index is plausible:

• Matches survey 
index

• Timing of recovery 
consistent with 
assessment model
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Petrale sole index of abundance



Conclusions re: VAST

1. Can fit indices using multi-species catch-rate data

2. Residual variation in catch rates at a given location is caused by 
differences in catchability

– Covaries among species…

– … therefore catch composition is informative about catchability for a given species

3. Works well in simulation experiment

4. Provides reasonable index for Winter Petrale fishery off OR/WA

– Corroborated by stock assessment and survey index

5. Uses similar techniques as single-species survey indices

6. Uses Travis-CI to continuously check that VAST gives identical answers to 
SpatialDeltaGLMM for single-species indices

Vector-autogressive spatio-temporal model
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Four questions

• How should we impute density in areas with little 
data? 

• When can we use auxiliary data to separate 
changes in fishery catchability and fish density?

• How should we account for non-random 
selection of fishing locations? 

• How should we process “biological data” in 
conjunction with fishery CPUE?



Question

How should we analyze data where the “design” is 
not independent of the “response”?

Approach

• Simulation experiment

– Shows sensitivity to preferential sampling

• Case study application

– Show potential pitfalls of model-based approach

Preferential sampling
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Conn, Thorson, Johnson. (2017) Confronting 
preferential sampling when analysing
population distributions: diagnosis and model-
based triage. Methods in Ecology and Evolution 
8, 1535–1546.



Definition

• Population density 𝒟

– Unknown abundance in vicinity of location 𝑠

• Sampling intensity 𝒫

– Probability 𝒫(𝑠) that data location 𝑠 will be available

• Covariates 𝑋

– Could affect either density 𝒟 or Sampling intensity 𝒫

Preferential sampling occurs if and only if: 

[𝒟,𝒫|𝑋] ≠ [𝒟 |𝑋][𝒫|𝑋]

Preferential sampling
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Problem

Causes bias because no 
samples in low-density habitat

Solution

• Jointly model sampling 
intensity and density

• Use estimated density to 
extrapolate density into 
areas with no data

Preferential sampling
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Simulation experiment:

• Simulate density 

log 𝜆 𝑠 = 𝛽0 + 𝐱 𝑠 𝛃 + 𝜔(𝑠)

𝛚~MVN(𝟎, 𝚺)

• Simulate inclusion probability

logit 𝜈 𝑠 = 𝛽0
∗ + 𝐱 𝑠 𝛃∗ + 𝜓(𝑠) + 𝑏𝜔(𝑠)

𝛙~MVN(𝟎, 𝚺∗)

• Simulate location of data

– Draw 50 locations 𝐬 from 𝜈 𝑠

• Simulate data

𝑐 𝑠 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 𝑠 𝑎 𝑠

Preferential sampling
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Simulation experiment:

• Uses areal formulation

– Small differences in notation but 
otherwise similar

• Three scenarios

– Not preferential:  𝑏 = 0

– Weakly preferential:  𝑏 = 1

– Strongly preferential:   𝑏 = 3

• 500 replicates per scenario

– Uses “epsilon bias-correction”

• Evaluates error in total abundance

𝑁𝑡𝑜𝑡𝑎𝑙 =𝜆 𝑠 𝑎(𝑠)

Preferential sampling
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Simulation 
experiment:

• Shows non-
independence

– More samples in 
high-density areas 
when 𝑏 = 3

• Shows potential bias

– Over-estimate 
density in unsampled
areas when 𝑏 = 3

Preferential sampling
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Simulation experiment:

• Biased when ignoring 
preferential sampling

– 50% bias when 𝑏 = 1

– 150% bias when 𝑏 = 3

• Increased error when 
estimating 𝑏 when 𝑏 =
0

Preferential sampling

32



Case study

• Model selection differs for different criteria

• AIC selects covariate + preferential sampling

• Cross-validation selects neither one

Preferential sampling
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Include 
covariate

Include 
pref. 
sampling

Number of 
params.

Cross-
validation 
error

𝚫𝑨𝑰𝑪 𝑵 𝑺𝑬(𝑵)

No No 5 87.2 99.1 70,738 6,988

No Yes 6 116.2 1.9 43,232 2,778

Yes No 12 88.3 103.0 66,989 20,374

Yes Yes 13 105.3 0.0 40,656 3,664



Case study

• Showing results for model without preferential sampling

• BUT:  results highly sensitive to model decisions

Preferential sampling
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Synopsis

• Preferential sampling causes bias due to poor extrapolation in 
unsampled areas

• Joint models can mitigate bias 

– True only if the model is correctly specified

• Results are sensitive to model specification

– Selected model may differ among criteria

• It is possible to implement using package VAST

– Treat sampling intensity as a 2nd “species”

– Multivariate dimension reduction could be useful given data from 
many different sources

Preferential sampling
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Four questions

• How should we impute density in areas with little 
data? 

• When can we use auxiliary data to separate 
changes in fishery catchability and fish density?

• How should we account for non-random 
selection of fishing locations? 

• How should we process “biological data” in 
conjunction with fishery CPUE?



Question

How to expand subsamples from survey tows?

Approach

– Expand subsamples to biomass for each tow

– Analyze catch for each category using multivariate spatio-
temporal model

– Process variance estimates to calculate “input sample size”

• Input sample size ≡ multinomial sample size with same variance

Spatio-temporal comp-expansion



Details

1. Fit delta-model to numbers 𝑛𝑐(𝑖) for each category 𝑐

Pr 𝑛𝑐(𝑖) = 𝐵 = ൝
1 − 𝑝𝑐 𝑖 if 𝐵 = 0

𝑝𝑐 𝑖 × 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 𝐵 𝑟𝑐(𝑖), 𝜎𝑚
2 𝑐 if 𝐵 > 0

2. Predictors in delta-model include spatio-temporal variation

𝑙𝑜𝑔𝑖𝑡 𝑝𝑐 𝑖 = 𝛽𝑝 𝑐, 𝑡𝑖 + 𝜎𝜔𝑝(𝑐)𝜔𝑝 𝑐, 𝑠𝑖 + 𝜎 𝑝(𝑐)휀𝑝 𝑐, 𝑠𝑖 , 𝑡𝑖

𝑙𝑜𝑔 𝑟𝑐(𝑖) = log 𝑎𝑖 + 𝛽𝑟 𝑐, 𝑡𝑖 + 𝜎𝜔𝑟(𝑐)𝜔𝑟 𝑐, 𝑠𝑖 + 𝜎 𝑝(𝑐)휀𝑟 𝑐, 𝑠𝑖 , 𝑡𝑖

3.   Assemble index by category

መ𝑑𝑐 𝑠, 𝑡 = Ƹ𝑝𝑐(𝑠, 𝑡) × Ƹ𝑟𝑐(𝑠, 𝑡)

መ𝐼𝑐 𝑡 =

𝑠=1

𝑛𝑠

𝑎(𝑠) × መ𝑑𝑐 𝑠, 𝑡

Spatio-temporal comp-expansion



Details

4.   Calculate standard error for proportions

SE 𝑃𝑐 𝑡
2
≈
መ𝐼𝑐 𝑡

መ𝐼 𝑡

SE መ𝐼𝑐 𝑡
2

መ𝐼𝑐 𝑡
+
σ𝑐=1
𝑛𝑐 SE መ𝐼𝑐 𝑡

2

መ𝐼 𝑡

5. Calculate “input sample size” Ƹ𝜏(𝑡)

Ƹ𝜏(𝑡) = Median𝑐

𝑃𝑐 𝑡 1 − 𝑃𝑐 𝑡

SE 𝑃𝑐 𝑡
2

Spatio-temporal comp-expansion



Simulation experiment

• Age-structured spatio-temporal “Operating model” (OM)

– Abundance at age

𝑁𝑎(𝑠, 𝑡) = ൝
exp 𝛽𝑁 +𝜔𝑁(𝑠) + 휀𝑁 𝑠, 𝑡 × exp −𝑍𝑎 if 𝑡 = 1 or a = 1

𝑁𝑎−1(𝑠, 𝑡 − 1) × exp(−𝑍) if 𝑡 > 1, 𝑎 > 1

– Biomass at age

𝑊𝑎(𝑠, 𝑡) = 𝑤𝛼 𝐿∞ exp −𝐾𝑎 𝑤𝛽 × exp 𝜔𝑊(𝑠) + 휀𝑊 𝑠, 𝑡

– Simulated sampling

𝑝𝑖 𝑎 = 1 − exp −𝑎𝑖𝑆𝑎𝑁𝑎 𝑠𝑖 , 𝑡𝑖

𝑟𝑖 𝑎 =
𝑎𝑖𝑆𝑎𝑁𝑎 𝑠𝑖 , 𝑡𝑖

𝑝𝑖 𝑎
×𝑊𝑎 𝑠𝑖 , 𝑡𝑖

– Simulated “true” proportion at age

𝑃𝑐 𝑡 =
σ𝑠=1
𝑛𝑠 𝑎(𝑠) × 𝑁𝑎(𝑠, 𝑡) ×𝑊𝑎(𝑠, 𝑡)

σ
𝑎=1
𝑛𝑎 σ

𝑠=1
𝑛𝑠 𝑎(𝑠) × 𝑁𝑎(𝑠, 𝑡) ×𝑊𝑎(𝑠, 𝑡)

Spatio-temporal comp-expansion



Simulation experiment

• Performance criteria

1. Error

2. Confidence interval coverage

𝜒2(𝑡) = 

𝑐=1

𝑛𝑐

Ƹ𝜏(𝑡) 𝑃𝑐 𝑡 log
𝑃𝑐 𝑡

𝑃𝑎 𝑡

𝑄(𝑡) = න

0

𝜒2(𝑡)

𝐶ℎ𝑖. 𝑠𝑞𝑢𝑎𝑟𝑒𝑑(𝑛𝑎)

where 𝑄(𝑡) should be uniform

Spatio-temporal comp-expansion



Simulation 
results

• Design and spatial 
provide similar 
results

• Can track cohorts 
through OM and both 
EMs

Spatio-temporal comp-expansion
Design-based Spatio-temporal True



Simulation 
results

• Both are essentially 
unbiased (number at 
top of each panel)

• Spatial has 10-25% 
decrease in root-mean-
squared error 
(parentheses)

Spatio-temporal comp-expansion

Design-based
Spatio-temporal
True



Simulation results

• Both design and spatio-
temporal have OK coverage

• Both have an excess of 
𝑄 𝑡 → 1

– Replicates where input sample 
size is too small!

Spatio-temporal comp-expansion

Design-based
Spatio-temporal
Ideal



Lingcod case-study application
Spatio-temporal comp-expansion

Female proportions Male proportions

Design-based Spatio-temporal



Lingcod case-study application

• Makes a big difference in absolute scale in 2017 
assessment model

• Spatio-temporal has lower input sample size

– Sample size doesn’t seem so important though

Spatio-temporal comp-expansion



Conclusions

1. It is computationally feasible to do comp-expansion using 
spatio-temporal model

– Can even use 2 cm bins with separate male vs. female

2. Not clear that there’s a big benefit

– Simulation showed a 25% decrease in root-mean-squared error

– Case study showed increase in RMSE

– Case study showed a large impact on assessment results

Spatio-temporal comp-expansion



Four questions

• How should we impute density in areas with little 
data? 

• When can we use auxiliary data to separate 
changes in fishery catchability and fish density?

• How should we account for non-random 
selection of fishing locations? 

• How should we process “biological data” in 
conjunction with fishery CPUE?



We know how to…

• Extrapolate density in unsampled areas

• Use auxiliary data to identify residual targeting

• Account for non-random availability of data

• Expand biological (age/length) data within spatio-
temporal models

Conclusions



Next steps

• Explore applications in diverse fisheries

– Different magnitude of missing-data problems

– Different “information content” in multispecies data

• Scale-up to larger problems

– Many high-seas data sets have >10,000,000 observations

– Some regions have substantial variation at <1km resolution

• Integrate multiple data types

– We sometimes have a mix of fishery and survey data

– Fishery data might be presence-only, presence/absence, count, or 
biomass-sampling records

Conclusions
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