Spatio-temporal models for populations

Thorson, Shelton, Ward, and Skaug. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICESJMS 72:12971310.

Spatio-temporal model

Benefits of single approach

1. Include biological mechanism
2. Improved communication
3. Similar review standards and "burden of proof"

Has been applied to >15 regions worldwide

> devtools::install_github("james-thorson/FishData")
Downloading GitHub repo james-thorson/FishData@master
from URL https://api.github.com/repos/james-thorson/FishData/zipball, Installing FishData

Four questions

- How should we impute density in areas with little data?
- When can we use auxiliary data to separate changes in fishery catchability and fish density?
- How should we account for non-random selection of fishing locations?
- How should we process "biological data" in conjunction with fishery CPUE?

Four questions

- How should we impute density in areas with little data?
- When can we use auxiliary data to separate changes in fishery catchability and fish density?
- How should we account for non-random selection of fishing locations!
- How should we process "biological data" in conjunction with fishery CPUE?

Delta-generalized linear mixed model (Delta-GLMM)

- Delta-model for observations

$$
\operatorname{Pr}(B=b)=\left\{\begin{array}{cc}
1-\gamma(s, t) & \text { if } B=0 \\
\gamma(s, t) \times g(B ; \lambda(s, t)) & \text { if } B>0
\end{array}\right.
$$

- Where $\gamma(s, t)$ is the probability of encountering the species
- $g(B ; \lambda(s, t))$ is a distribution for positive catches
- Spatio-temporal variation in encounter probability

$$
\operatorname{logit}(\gamma(s, t))=\alpha_{\gamma}(t)+\omega_{\gamma}(s)+\varepsilon_{\gamma}(s, t)
$$

- $\alpha_{\gamma}(t)$ is the intercept for each year
- Where $\boldsymbol{\omega}_{\gamma}$ and $\boldsymbol{\varepsilon}_{\gamma}(t)$ follow a spatial distribution
- Spatio-temporal variation in density

$$
\log (\lambda(s, t))=\alpha_{\lambda}(t)+\omega_{\lambda}(s)+\varepsilon_{\lambda}(s, t)
$$

- Where parameters are defined similarly to $\gamma(s, t)$
- Used to predict local density

$$
\hat{d}(s, t)=\hat{\gamma}(s, t) \times \hat{\lambda}(s, t)
$$

- Where $\hat{\gamma}(s, t)$ and $\hat{\lambda}(s, t)$ are predictions conditioned on data

Abundance indices

petrale

sablefish
dogfish

sharpchin

redbanded

shortbelly

widow

rougheye

shortspine

yellowtail

Distribution shifts

- Highly variable distribution for semipelagic species
- Dogfish
- Sablefish
- Hake
- Few clear trends
- Depends on timescale

Thorson, Pinsky, and Ward. 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity.
Methods Ecol. Evol. 7(8): 990-1002.

Spatial Correlation

Sparse spatial correlation matrices

- SPDE approximation
- 2D autoregressive process
- Stream network as Ornstein-Uhlenbeck process

Parameter estimation

- Maximum marginal likelihood
- Can use "bias-correction" for empirical Bayes predictions
- Template Model Builder
- Automatic differentiation
- Laplace approximation

Spatial Correlation

Matern correlation function

- $v=0.5$
- Approximately exponential
- $v \rightarrow \infty$
- Approximately Gaussian
- Differentiable [$v-1]$ times

Spatial Correlation

Stochastic partial differential equation (SPDE)

- Separable for locations in 2D

Lindgren, Rue, Lindström. 2011. J R Stat Soc Ser B Stat Methodol 73(4):423-498.

Sample locations
(10

Mesh composed of triangles

Spatial Correlation

Joint distribution

$$
\boldsymbol{\varepsilon} \sim M V N(0, \boldsymbol{\Sigma})
$$

Which can reduce to a linear form:

$$
\begin{gathered}
\boldsymbol{\Sigma}^{-1}=\kappa^{4} \mathbf{M}_{0}+2 \kappa^{2} \mathbf{M}_{1}+\mathbf{M}_{2} \\
\mathbf{M}_{2}=\mathbf{M}_{1} \mathbf{M}_{0}^{-1} \mathbf{M}_{1}
\end{gathered}
$$

Four questions

Fhow should maini and

 data?- When can we use auxiliary data to separate changes in fishery catchability and fish density?
- How should we account for non-random selection of fishing locations?
- How should we process "biological data" in conjunction with fishery CPUE?

Vector-autogressive spati (VAST)

- Delta-model for observations
- Same as single-species model
- Spatio-temporal variation in density Accounting for spatiotemporal variation and fisher targeting when estimating abundance from multispecies fishery data. Canadian Journal of Fisheries and Aquatic Sciences 74, 1794-1807.

$$
\log \left(\lambda_{i}\right)=\alpha(t)+\sum_{f=1}^{n_{f}} L_{\omega}\left(c_{i}, f\right) \omega\left(s_{i}, f\right)+\sum_{f=1}^{n_{f}} L_{\varepsilon}\left(c_{i}, f\right) \varepsilon\left(s_{i}, f, t_{i}\right)+\sum_{f=1}^{n_{f}} L_{\delta}\left(c_{i}, f\right) \delta\left(f, v_{i}\right)
$$

- $\sum_{f=1}^{n_{f}} L_{\omega}\left(c_{i}, f\right) \omega\left(s_{i}, f\right)$ is spatial covariation
- $\sum_{f=1}^{n_{f}} L_{\varepsilon}\left(c_{i}, f\right) \varepsilon\left(s_{i}, f, t_{i}\right)$ is spatio-temporal covariation
- α_{t} is the intercept for each year
- Where $\omega(f)$ and $\varepsilon(f, t)$ follow a spatial distribution with variance of one
- $L_{\omega}, L_{\varepsilon}$, and L_{δ} are loadings matrices
- Used to predict total density

$$
\hat{d}(s, c, t)=\hat{\gamma}(s, c, t) \times \hat{\lambda}(s, c, t)
$$

Fishery-dependent index standardization

- Construct indices from fishery catch rates

$$
\mathbb{E}\left(B_{c}\right)=F_{c} D Q_{c}
$$

- Where
$3^{\text {rd }}$ term in VAST catch equation
- B_{c} is catch for each species c
- Q_{c} is catchability
- F_{c} is fishing effort
- D_{c} is density

Goal: Use multispecies data to "account" for fisher targeting (unexplained variation in catch-rates at a given location, caused by catchability differences)

Joint species distribution models

Decompose catch rates

$$
\mathbb{E}\left(C_{p}\right)=Q_{p} \times F_{p} \times D_{p}
$$

1. Density includes spatial variation and measured habitat variables

$$
\log \left(D_{p}\right)=\sum_{j=1}^{J} A_{p, j} \psi_{j}(s, t)+\sum_{l=1}^{L} \gamma_{p, l}(t) x_{l}(s, t)
$$

2. Fishing effort includes covariation in targeting

$$
\log \left(F_{p}\right)=\sum_{k=1}^{K} B_{p, k} \varepsilon_{k}(i)
$$

3. Catchability includes measured variables (i.e., GPS, plotters, vessel ID, etc.)

$$
\log \left(Q_{p}\right)=\sum_{l=1}^{M} v_{p, m} y_{m}(i)
$$

Joint species distribution models

Decomposing variation

1. Spatial variation in density

- Measurable during index standardization

2. Variation in fishing tactics

- Not directly observed

	Mechanisms	Model Treatment
Spatial location choice based on expected profit Spatio-temporal adjustments in fishing location related to changes in relative ex- vessel prices of species, input costs, and regulations over time	Cov $\left(D_{p}\right)=\mathbf{A A}^{T}$	
Changes in fishing location due to new information obtained from prior fishing (e.g., avoiding areas with low catch rates)		
Fine-scale spatial adjustments to seek a more favorable species composition and higher catch rates once catch is observed at initial location Changes in timing of fishing activity (e.g., daytime, nighttime, crepuscular)	Cov $\left(F_{p}\right)=\mathbf{B B}^{T}$	
Changes in fishing operations, e.g., bearing and speed Changes in fishing gear (e.g., bait type, hook type, mesh size)		

Vector-autogressive spatio-temporal model

Simulation testing

- Used simulator that was independently built
- Generate catches for four species
- 2×2 factorial cross of four estimation models
- With/without spatial variation
- With/without residual targetting

Case study: Petrale sole winter fishery

Results

- Fit to data for Petrale, dover, sablefish, and thornyheads
- Account for targeting via residual correlations

Covariance in catchability

- $\operatorname{Cov}\left(Q_{c}\right)=\boldsymbol{L}_{\boldsymbol{\delta}} \boldsymbol{L}_{\boldsymbol{\delta}}^{T}$
- Dover, Thornyhead, Sablefish are caught together
- Winter petrale fishery is "clean"

Correlation in catchability in VAST

Petrale sole index of abundance

Index is plausible:

- Matches survey index
- Timing of recovery consistent with assessment model

Vector-autogressive spatio-temporal model

Conclusions re: VAST

1. Can fit indices using multi-species catch-rate data
2. Residual variation in catch rates at a given location is caused by differences in catchability

- Covaries among species...
- ... therefore catch composition is informative about catchability for a given species

3. Works well in simulation experiment
4. Provides reasonable index for Winter Petrale fishery off OR/WA

- Corroborated by stock assessment and survey index

5. Uses similar techniques as single-species survey indices
6. Uses Travis-CI to continuously check that VAST gives identical answers to SpatialDeltaGLMM for single-species indices

Four questions

fhow should waili in adem

 data?- When can we use auxiliary data to separate changes in fishery catchability and fish density?
- How should we account for non-random selection of fishing locations?
- How should we process "biological data" in conjunction with fishery CPUE?

Preferential sampling

Question

How should we analyze data where the "design" is not independent of the "response"?

Conn, Thorson, Johnson. (2017) Confronting preferential sampling when analysing population distributions: diagnosis and model-

Approach

 based triage. Methods in Ecology and Evolution 8, 1535-1546.- Simulation experiment
- Shows sensitivity to preferential sampling
- Case study application
- Show potential pitfalls of model-based approach

Preferential sampling

Definition

- Population density \mathcal{D}
- Unknown abundance in vicinity of location s
- Sampling intensity \mathcal{P}
- Probability $\mathcal{P}(s)$ that data location s will be available
- Covariates X
- Could affect either density \mathcal{D} or Sampling intensity \mathcal{P}

Preferential sampling occurs if and only if:

$$
[\mathcal{D}, \mathcal{P} \mid X] \neq[\mathcal{D} \mid X][\mathcal{P} \mid X]
$$
 \title{

Preferential sampling

}
 \title{

Preferential sampling

}

Problem

Causes bias because no samples in low-density habitat

Solution

- Jointly model sampling intensity and density
- Use estimated density to extrapolate density into areas with no data

Preferential sampling

Simulation experiment:

- Simulate density

$$
\begin{gathered}
\log (\lambda(s))=\beta_{0}+\mathbf{x}(s) \boldsymbol{\beta}+\omega(s) \\
\boldsymbol{\omega} \sim \operatorname{MVN}(\mathbf{0}, \boldsymbol{\Sigma})
\end{gathered}
$$

- Simulate inclusion probability

$$
\begin{aligned}
\operatorname{logit}(v(s))= & \beta_{0}^{*}+\mathbf{x}(s) \boldsymbol{\beta}^{*}+\psi(s)+b \omega(s) \\
& \boldsymbol{\Psi} \sim \operatorname{MVN}\left(\mathbf{0}, \boldsymbol{\Sigma}^{*}\right)
\end{aligned}
$$

- Simulate location of data
- Draw 50 locations \mathbf{s} from $v(s)$
- Simulate data

$$
c(s) \sim \operatorname{Poisson}(\lambda(s) a(s))
$$

Preferential sampling

Simulation experiment:

- Uses areal formulation
- Small differences in notation but otherwise similar
- Three scenarios
- Not preferential: $b=0$
- Weakly preferential: $b=1$
- Strongly preferential: $b=3$
- 500 replicates per scenario
- Uses "epsilon bias-correction"
- Evaluates error in total abundance

$$
N_{t o t a l}=\sum \lambda(s) a(s)
$$

Preferential sampling
 (a) Covariate

Easting
(d) Counts $\left(Y_{i}\right), b=0$

(g) $\quad \hat{N}_{i}, b=0$

- Over-estimate density in unsampled areas when $b=3$

Simulation

 experiment:- Shows nonindependence
- More samples in high-density areas when $b=3$
- Shows potential bias

Preferential sampling

Simulation experiment:

- Biased when ignoring preferential sampling
- 50% bias when $b=1$
-150% bias when $b=3$
- Increased error when estimating b when $b=$ 0

Preferential sampling

Case study

- Model selection differs for different criteria

Include covariate	Include pref. sampling	Number of params.	Cross- validation error	(AIC	\widehat{N}	$\widehat{S E}(N)$
No	No	5	87.2	99.1	70,738	6,988
No	Yes	6	116.2	1.9	43,232	2,778
Yes	No	12	88.3	103.0	66,989	20,374
Yes	Yes	13	105.3	0.0	40,656	3,664

- AIC selects covariate + preferential sampling
- Cross-validation selects neither one

Preferential sampling

Case study

- Showing results for model without preferential sampling
(a) Seal counts

Easting
(b) Modeled abundance

Easting

Abundance - 1000

- BUT: results highly sensitive to model decisions

Preferential sampling

Synopsis

- Preferential sampling causes bias due to poor extrapolation in unsampled areas
- Joint models can mitigate bias
- True only if the model is correctly specified
- Results are sensitive to model specification
- Selected model may differ among criteria
- It is possible to implement using package VAST
- Treat sampling intensity as a $2^{\text {nd }}$ "species"
- Multivariate dimension reduction could be useful given data from many different sources

Four questions

fhow should waimi in dem

 data?- When can we use auxiliary data to separate changes in fishery catchability and fish density?
- How should we account for non-random selection of fishing locations?
- How should we process "biological data" in conjunction with fishery CPUE?

Spatio-temporal comp-expansion

Question

How to expand subsamples from survey tows?

Approach

- Expand subsamples to biomass for each tow
- Analyze catch for each category using multivariate spatiotemporal model
- Process variance estimates to calculate "input sample size"
- Input sample size \equiv multinomial sample size with same variance

Spatio-temporal comp-expansion

Details

1. Fit delta-model to numbers $n_{c}(i)$ for each category c

$$
\operatorname{Pr}\left(n_{c}(i)=B\right)=\left\{\begin{array}{cl}
1-p_{c}(i) & \text { if } B=0 \\
p_{c}(i) \times \operatorname{Lognormal}\left(B \mid r_{c}(i), \sigma_{m}^{2}(c)\right) & \text { if } B>0
\end{array}\right.
$$

2. Predictors in delta-model include spatio-temporal variation

$$
\begin{gathered}
\operatorname{logit}\left(p_{c}(i)\right)=\beta_{p}\left(c, t_{i}\right)+\sigma_{\omega p}(c) \omega_{p}\left(c, s_{i}\right)+\sigma_{\varepsilon p}(c) \varepsilon_{p}\left(c, s_{i}, t_{i}\right) \\
\log \left(r_{c}(i)\right)=\log \left(a_{i}\right)+\beta_{r}\left(c, t_{i}\right)+\sigma_{\omega r}(c) \omega_{r}\left(c, s_{i}\right)+\sigma_{\varepsilon p}(c) \varepsilon_{r}\left(c, s_{i}, t_{i}\right)
\end{gathered}
$$

3. Assemble index by category

$$
\begin{gathered}
\hat{d}_{c}(s, t)=\hat{p}_{c}(s, t) \times \hat{r}_{c}(s, t) \\
\hat{I}_{c}(t)=\sum_{s=1}^{n_{s}}\left(a(s) \times \hat{d}_{c}(s, t)\right)
\end{gathered}
$$

Spatio-temporal comp-expansion

Details

4. Calculate standard error for proportions

$$
\widehat{\mathrm{SE}}\left[\hat{P}_{c}(t)\right]^{2} \approx \frac{\hat{I}_{c}(t)}{\hat{I}(t)}\left[\frac{\widehat{\mathrm{SE}}\left[\hat{I}_{c}(t)\right]^{2}}{\hat{I}_{c}(t)}+\frac{\sum_{c=1}^{n_{c}} \widehat{\mathrm{SE}}\left[\hat{I}_{c}(t)\right]^{2}}{\hat{I}(t)}\right]
$$

5. Calculate "input sample size" $\hat{\tau}(t)$

$$
\hat{\tau}(t)=\operatorname{Median}_{c}\left[\frac{\hat{P}_{c}(t)\left(1-\hat{P}_{c}(t)\right)}{\widehat{\mathrm{SE}}\left[\hat{P}_{c}(t)\right]^{2}}\right]
$$

Spatio-temporal comp-expansion

Simulation experiment

- Age-structured spatio-temporal "Operating model" (OM)
- Abundance at age

$$
N_{a}(s, t)=\left\{\begin{array}{cc}
\exp \left(\beta_{N}+\omega_{N}(s)+\varepsilon_{N}(s, t)\right) \times \exp (-Z a) & \text { if } t=1 \text { or } a=1 \\
N_{a-1}(s, t-1) \times \exp (-Z) & \text { if } t>1, a>1
\end{array}\right.
$$

- Biomass at age

$$
W_{a}(s, t)=w_{\alpha}\left(L_{\infty} \exp (-K a)\right)^{w_{\beta}} \times \exp \left(\omega_{W}(s)+\varepsilon_{W}(s, t)\right)
$$

- Simulated sampling

$$
\begin{aligned}
& p_{i}(a)=1-\exp \left(-a_{i} S_{a} N_{a}\left(s_{i}, t_{i}\right)\right) \\
& r_{i}(a)=\frac{a_{i} S_{a} N_{a}\left(s_{i}, t_{i}\right)}{p_{i}(a)} \times W_{a}\left(s_{i}, t_{i}\right)
\end{aligned}
$$

- Simulated "true" proportion at age

$$
P_{c}(t)=\frac{\sum_{s=1}^{n_{s}}\left(a(s) \times N_{a}(s, t) \times W_{a}(s, t)\right)}{\sum_{a=1}^{n_{a}} \sum_{s=1}^{n_{s}}\left(a(s) \times N_{a}(s, t) \times W_{a}(s, t)\right)}
$$

Spatio-temporal comp-expansion

Simulation experiment

- Performance criteria

1. Error
2. Confidence interval coverage

$$
\begin{aligned}
\chi^{2}(t) & =\sum_{c=1}^{n_{c}} \hat{\tau}(t) \hat{P}_{c}(t) \log \left(\frac{\hat{P}_{c}(t)}{P_{a}(t)}\right) \\
Q(t) & =\int_{0}^{\chi^{2}(t)} \text { Chi.squared }\left(n_{a}\right)
\end{aligned}
$$

where $Q(t)$ should be uniform

Spatio-temporal comp-expansion

Design-based Spatio-temporal True

Simulation results

- Design and spatial provide similar results
- Can track cohorts through OM and both EMs

Spatio-temporal comp-expansion

Simulation results

- Both are essentially unbiased (number at top of each panel)
- Spatial has 10-25\% decrease in root-meansquared error (parentheses)

Design-based
Spatio-temporal
True

Spatio-temporal comp-expansion

Simulation results

- Both design and spatiotemporal have OK coverage
- Both have an excess of $Q(t) \rightarrow 1$
- Replicates where input sample size is too small!

Spatio-temporal comp-expansion Lingcod case-study application

Female proportions

Spatio-temporal comp-expansion

Lingcod case-study application

- Makes a big difference in absolu assessment model
- Spatio-temporal has lower input
- Sample size doesn't seem so impo

Spatio-temporal comp-expansion

Conclusions

1. It is computationally feasible to do comp-expansion using spatio-temporal model

- Can even use 2 cm bins with separate male vs. female

2. Not clear that there's a big benefit

- Simulation showed a 25% decrease in root-mean-squared error
- Case study showed increase in RMSE
- Case study showed a large impact on assessment results

Four questions

- How should we impute density in areas with little data?
- When can we use auxiliary data to separate changes in fishery catchability and fish density?
- How should we account for non-random selection of fishing locations?
- How should we process "biological data" in conjunction with fishery CPUE?

Conclusions

We know how to...

- Extrapolate density in unsampled areas
- Use auxiliary data to identify residual targeting
- Account for non-random availability of data
- Expand biological (age/length) data within spatiotemporal models

Conclusions

Next steps

- Explore applications in diverse fisheries
- Different magnitude of missing-data problems
- Different "information content" in multispecies data
- Scale-up to larger problems
- Many high-seas data sets have $>10,000,000$ observations
- Some regions have substantial variation at $<1 \mathrm{~km}$ resolution
- Integrate multiple data types
- We sometimes have a mix of fishery and survey data
- Fishery data might be presence-only, presence/absence, count, or biomass-sampling records

Acknowledgements

Co-authors:

- Paul Conn
- Devin Johnson
- Melissa Haltuch
- Ole Shelton
- Eric Ward
- Hans Skaug
- Kasper Kristensen
- Robby Fonner
- Kotaro Ono

Organizers

- Mark Maunder
- Kevin Hill

