## Evaluation of three standardization methods to estimate CPUE from observer data

John Walter ${ }^{1}$, Arnaud Gruss², Elizabeth Babcock², Matt Lauretta ${ }^{1}$, Francesca Forrestal ${ }^{2}$, Michael

Schirripa ${ }^{1}$, Clay Porch ${ }^{1}$

Lo N, Jacobson, L. and Squires, D. 1992. Indices of Relative Abundance from Fish Spotter Data based on Delta-Lognormal Models Deltalognormal model Can. J. Fish. Aqua. Sci.. Vol. 49, 1992

Campbell, R.A., 2015. Constructing stock abundance indices from catch and effort data: some nuts and bolts. Fisheries Research 161, 109-130.

Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science 72, 1297-1310

## The problem: observed sets are only a subset of trips, not always random



Logbook data (census)
O Observer sets (subset)

How to predict in unfished areas and downweight clusters of high catches


Naïve mean (assume mean of unfished=mean of fished)

Imputation

- use last value (Walters Folly and Fantasy 2006)
- use mean of adjacent cells (Carruthers et al 2011)
- use model to input Campbell (2015)

Geostatistics (statistical interpolation)

- Thorson et al 2015,
- Walter et al 2014a, 2014b


## Experimental design and methods

LLsim (Goodyear 2013)
3 populations
3 subsets of each population Full data
10\% random sample of trips 10\% biased sample
Apply standardization approaches Blind study design, analyst did not know true population trend

Pop1, true trend


Dataset creation- mimics US longline fleet



Probability of trip being sampled under observer bias

## 3 methods (no model selection applied)

$g(\eta)=y e a r+$ season + area $+h o o k+$ bait + light $+h b f+$ year *area

1. Status quo delta GLM in R

- with/wo year*area interactions as random or fixed effects

2. Campbell spatial weight and gap filling

- with/without interactions (fixed)
- with/without weighting obs in fitting

1. weight $_{y, a}=\frac{\text { Nobs }}{\text { Nstrata }} \cdot \frac{1}{n_{y, a}}$
2. CPUE $_{y, s}=\sum_{a=1}^{N a} S A_{a} \operatorname{prob}_{y, s, a} u_{y, s, a}$
$S A_{a}$ is the surface area (in $\mathrm{km}^{2}$ ) of area $a$

3 Uses reduced model to fill in missing year*area cells
3. Thorson VAST, delta model

Key distinction is how random effects are treated in predictions

1. Status quo delta GLM predict on grid of only fixed effects (e.g. SAS LSmeans), average over spatial areas
Random year*area interactions drop out
2. Campbell predict on grid of fixed effects, sum spatial areas
3. Thorson VAST

Predict over spatial area, sum predictions


## Metrics for evaluation

$\mathrm{R}^{2}$ between predicted and true

## Mean absolute error (both

 normalized to a mean of one)

## Results on full dataset

Population 4

## Population 1





## QQ Diagnostics on full dataset




Campbell wtd, fixed year*area


## Full dataset, with weighting and interactions

 Population 1
## Population 4






Results ( $R^{2}$ mean, min and max)
Slight decline with
10\% random

Greater decline, higher variability with $10 \%$ bias

Negligible difference between methods, except Campbell weighting


Results, Mean absolute error

Fixed interactions performed poorly

Campbell weighted with fitting also performed poorly
$\begin{array}{llll}\square \text { camp } & \square \text { SQ } & \square \text { campFixedint } & \square \text { campwt } \\ \square \text { VAST } & \square \text { SQintRand } & \square \text { SQFixedint } & \square \text { campFixedintwt }\end{array}$



Some really bad fits- why?




Theoretical quantiles

Why: dodgy estimates of year*area interactions (not explicitly put in Llsim)
often models select year*area interactions, fixed interactions do not converge or lead to very poor estimates

|  | sig | Not sig | year*area <br> not |
| :---: | :---: | :---: | :---: |
|  | year*area | year*area |  |
| converged |  |  |  |$|$

Plot interaction term, evaluate trend vs randomness

- If random, model as RE
- If poorly estimated, model as RE to harness N(0,sigma) shrinkage
- If there is a trend, need good spatial weights

BEST: Avoid them in the first place

Status quo, fixed int., pop 5, 10\% bias, rep 1
binomial model








Lognormal model


Why: Low sample coverage of spatial areas

Disparate sizes
of areas

year 2004


year 2008


## Teaser: interpreting with spatial trends



## Range shift

Population is same

## contraction

Population declines

## expansion

Population increases


Figure 1. from Link et al 2011. Guidelines for incorporating fish distribution shifts into a fisheries management context. Fish and Fisheries

Pop 1, range shift



1987


2000


2001

$2007 \quad 2008$
2009


2010
2011


1989
1990 1988 1991





1987


1988
1989
1990
1991


1994


1995


## Conclusions

- Take simulation results with grain of salt
- All 3 methods generally work well on reduced and biased datasets, appear robust to weak range shifts- further testing needed
- Real loss in performance was with spatial weights
- (Not methodological per se but due to nature of spatial areas)
- And with fixed interactions- again due to areas and poor estimation
- Beware of Year*area interactions!
- plot year*area coefficients, if random, model as RE
- If not random....may want to model as RE to harness N(0,sigma) shrinkage
- Create 'good' spatial areas or...
- Avoid "tyranny of the grid" entirely- use VAST and similar approaches


## Acknowledgements

Phil Goodyear for LLSIM and many key contributions, Nancy Lo, Robert Campbell and Jim Thorson for advancing methodology. CAPAM organizers and host.


## Augmenting fishery data: adding additional samples

Random spatial field, maps kriging variance, points are fishing locations

add 20 samples to minimize the kriging variance

Results in substantial reduction in kriging variance and bias

