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Spatio-Temporal Processes and Data

Data from spatio-temporal processes are common in the real world,
representing a variety of interactions across processes and scales of
variability.



Spatio-Temporal Modeling: Challenges

Data:

some data sets very large (e.g., satellite; model output) and some
very small (e.g., in situ measurements of zooplankton)

multiple data sources

data at different supports in time and space (point
measurements, aggregations, satellite footprints, model grid cells;
daily data vs monthly data; high frequency data – data storage
tags, telemetry)

unequal and preferential sampling

data of mixed types (counts, proportions, normal,
presence/absence)



Spatio-Temporal Modeling: Challenges (cont.)

Process:

non-stationary, non-separable, nonlinear

extremes

multiple processes (multivariate), potentially at different space
and time scales

scientific realism

parsimonious parameterizations

Other Important Issues:

computation

principled uncertainty quantification

sampling design

model-assisted decisions



Spatio-Temporal Modeling: Solutions (Common Themes)

This talk will give an overview of statistical modeling of
spatio-temporal processes and emphasize:

science-motivated (dynamical) models

Bayesian hierarchical models (the power of conditioning; deep
models)

parameters as processes

basis function (functional) representations

regularization

emulation/surrogate models: “pre-training” prior elicitation

change-of-support/high-frequency covariates (if time allows)



Spatio-Temporal Processes and Data

Why spatio-temporal modeling? Characterize processes in the
presence of uncertain and (often) incomplete observations and system
knowledge, for the purposes of:

• Prediction in space (smoothing, interpolation)

• Prediction in time (forecasting)

• Assimilation of observations with deterministic models

• Inference on parameters that explain the etiology of the
spatio-temporal process

• Design and adaptation of monitoring networks



Motivating Example: Assimilating Ocean Color
Observations

(Leeds et al. 2014)



Example: Physical/Biological Interface



Spatio-Temporal (S-T) Models In Statistics

In statistics, historically we are concerned with spatio-temporal models of
the form: (simple representation)

observations = true process with observation/sampling error

true (latent) process = “fixed effects ′′ + dependent random process

Challenges:

data model (likelihood) that represents the generating process

model for the dependent random process

I often represents unknown covariates
I can represent some other scientific process

computational tractability

Note: dependent processes can also be useful for components of the data model!



Statistical Models for Spatio-Temporal Random Processes

Markov random fields (MRFs): space-time version of
auto-Gaussian (CAR), auto-logistic, auto-Poisson, etc.

Latent Gaussian Processes: e.g., generalized linear mixed models
(GLMMs) with latent Gaussian S-T processes

Latent Conditional Gaussian Processes: as with the GLMM but
with process that has nonlinear evolution and Gaussian errors

Other “non-traditional” models: e.g.,

I Agent (Individual)-Based Models

I Analog (“mechanism free”) Models

I Recurrent Neural Network Models



Example: GLMM with Latent Gaussian S-T Process

Data model: (data: {z(s; t)}; process: {Y (s; t)})

z(s; t)|Y (s; t), γ ∼ ind . EF (Y (s; t), γ),

where EF is a distribution from the exponential family with scale
parameter γ and mean E (z(s; t)|γ) = Y (s; t).

Then, we consider a transformation of the mean response modeled in
terms of fixed effects and random processes:

g(Y (s; t)) = x(s; t)′β + δ(s) + ξ(t) + ν(s; t),

For this talk: focus on ν(s; t), a spatio-temporal (S-T) Gaussian process
(GP) or random field.



Models for the Spatio-Temporal Gaussian Process

The dependent S-T random process can be considered from two
perspectives:

(1) Descriptive (Marignal) Perspective: Characterize the first- and
second-moment behavior of the process (e.g., kriging)

(2) Dynamical (Conditional) Perspective: Spatial process evolves in
time (e.g., linear and nonlinear Markov models)



Spatio-Temporal Processes: Descriptive Methods

Descriptive methods: require a valid covariance function for the process
ν(s; t) at any two locations in space and time!

With that, one can perform optimal prediction and/or account for residual
spatio-temporal prediction. E.g., consider simulation example (observation
locations given by “x”)



Spatio-Temporal Processes: Descriptive Methods

Descriptive S-T models are powerful, but there are issues that make them
problematic for many real-world spatio-temporal processes.

Dimensionality: prediction models and/or likelihoods require matrix
inverses; can be overcome by various methods:

I basis function or kernel representations (reduced rank, over complete,
full rank)

I neighbor-based methods

I covariance tapering

I moving to a Markov random field framework (precision matrix)

Realistic Dependence: most S-T processes are more complex than
can be described by the limited classes of valid S-T covariance
functions (non-separable; non-stationary)

I basis function parameterizations can help here as well

I still can be problematic for multivariate and nonlinear processes



Basis Function Random Effects Representations for ν(s; t)

Flexibility through marginalization: usually fixed basis functions and random
coefficients. Basis functions can be estimated (factor models) but limits structure
that one can place on the coefficients.

Spatio-Temporal Basis Functions: random effects {αk}

g(Y (s; t)) = x(s; t)′β +
K∑

k=1

φk(s; t)αk ,
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Basis Function Random Effects Representations for ν(s; t)

Flexibility through marginalization: usually fixed basis functions and random
coefficients. Basis functions can be estimated (factor models) but limits structure
that one can place on the coefficients.

Spatio-Temporal Basis Functions: random effects {αk}

g(Y (s; t)) = x(s; t)′β +
K∑

k=1

φk(s; t)αk ,

Temporal Basis Functions: random effects {αk(s)}

g(Y (s; t)) = x(s; t)′β +
K∑

k=1

φk(t)αk(s),

Spatial Basis Functions: random effects {αk(t)}

g(Y (s; t)) = x(s; t)′β +
K∑

k=1

φk(s)αk(t),

Potential issue: confounding



Bayesian Hierarchical Models

Denote the data as Z , the process as Y , and parameters as θ. The joint
uncertainty is expressed through: [Z ,Y , θ] = [Z |Y , θ][Y |θ][θ]

Rather than seek to model the complicated joint distribution, we factor it
into a product of a sequence of conditional distributions, to which we
might be able to apply scientific insight.

Thus, for complicated spatio-temporal processes, we consider the following
three-stage factorization of [data, process, parameters]
(Berliner, 1996):

Stage 1. Data Model: [data|process, data parameters]

Stage 2. Process Model: [process|process parameters]

Stage 3. Parameter Model: [data params and process params].



Bayesian Hierarchical Models (cont.)

One of the most important points of the Berliner hierarchical modeling
paradigm (which is often lost on statisticians who equate hierarchical
modeling with Bayesian modeling):

avoid covariance models as much as possible

put as much structure as possible in the conditional mean via random
effects

That is, push the dependence down a level of the hierarchy to the mean to
build dependence through marginalization;

first moments are much easier to model and there is much more
scientific knowledge about their specification!

These are “deep” models! (Paves the way for dynamical models)



Linear Dynamical Spatio-Temporal Models
(DSTMs)



Dynamics: Why?



Dynamics: Why?



Dynamical Spatio-Temporal Models (DSTMs)

There are two critical assumptions for DSTMs: (state-space formulation)

Data conditioned on the latent process can be factored into the
product of independent distributions; e.g.,

[zT , . . . , z1|YT , . . . ,Y1,θd ] =
T∏
t=1

[zt |Yt ,θd ]

The joint distribution of the latent process can be factored into
conditional (in time) models; e.g.,

[YT , . . . ,Y1,YI |θp] =
T∏
t=1

[Yt |Yt−1,Yt−2, . . . ;θp][YI |θp]

Challenge: specification of the models associated with these component
distributions, particularly: [Yt |Yt−1,Yt−2, . . . ;θp]



Linear DSTM: Process Model

In the linear process case, the conditional distribution [Yt |Yt−1,θp]
implies a first-order Markov model of the form:

Yt(si ) =
n∑

j=1

mijYt−1(sj) + ηt(si ), for i = 1, . . . , n.

These equations imply a matrix model (a VAR(1) model):

Yt = MYt−1 + ηt , ηt ∼ Gau(0,Cη),

However, the difficulty here is dimensionality! It can be difficult to get stable
estimates of the parameters {mij , i , j = 1, . . . , n} in the spatio-temporal case
(requires T � n).

We must parameterize M in these settings! (how?)



Linear DSTM: Efficient Parameterization of M

Spatio-Temporal Random Walk: M = I

Yt = Yt−1 + ηt , ηt ∼ ind. Gau(0,Cη), Cη spatial dependence
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Linear DSTM: Efficient Parameterization of M

Spatio-Temporal Random Walk: M = I

Yt = Yt−1 + ηt , ηt ∼ ind. Gau(0,Cη), Cη spatial dependence

Common AR with Spatial Errors: M = mI

Yt = mYt−1 + ηt , ηt ∼ ind. Gau(0,Cη),

Spatially-Varying AR Models: M = diag(m)I

Yt = diag(m)Yt−1 + ηt , ηt ∼ ind. Gau(0,Cη).

STAR Parameterization: M = (I− B0)−1B1, and ηt = (I− B0)−1E0εt

Yt = B0Yt + B1Yt−1 + E0εt =⇒ Yt = MYt−1 + ηt ,

*Lagged-Nearest Neighbor: M (sparse and banded) Let M be
parameterized such that only the mij corresponding to the location si and
the nearest neighbors, say {sj : j ∈ Ni}, at the previous time are important.



Linear DSTM: Lagged Nearest Neighbor Process Behavior

Dynamical behavior is implied by changes in the transition operator (kernel)
“shape”: e.g., linear spatio-temporal processes often exhibit advective and
diffusive behavior:

“width” (decay rate) of the transition operator neighborhood controls the
rate of spread (diffusion)

degree of “asymmetry” in the transition operator controls the speed and
direction of propagation (advection)



Basic “Deep” Hierarchical Linear DSTM

Data:
zt = HtYt + εt , εt ∼ Gau(0,Cε,t(θd))

Process:

Yt = M(θm,1)Yt−1 + ηt , ηt ∼ Gau(0,Cη(θm,2))

Parameters:

θd , θm,1, θm,2

These parameters may be estimated empirically, but we

get more flexibility if they are given dependent prior

distributions, such as Gaussian random process priors

(that may depend on other variables), and they can

easily be allowed to vary with time and/or space.



Example: Radar Nowcasting (Sydney, pre 2000 Olympics)



Basis Function Representation

As with descriptive models, one can parameterize the dynamical
spatio-temporal process in terms of basis function expansions:

Example “Deep” Hierarchical Basis Expansion DSTM

Stage 1:
zt = HtYt + εt , εt ∼ N(0, σ2ε I)

Stage 2:

Yt = µ+ Φαt + νt , νt ∼ N(0,Cν)

Stage 3:
αt = Mααt−1 + ηt , ηt ∼ N(0,Cη)

Stage 4: Structure on the parameters (typically, problem specific, but
important for modeling complex processes).



Basis Example: Long-Lead SST Forecasting



Non-Linear Dynamical Spatio-Temporal Models



What About Nonlinear DSTMs? e.g., Density dependent
growth



Nonlinear Spatio-Temporal Processes

Few environmental processes are linear (e.g., growth, nonlinear advection,
density dependence, shock waves, repulsion, predator-prey, etc.)

Nonlinear dynamical behavior arises from the complicated interactions
across spatio-temporal scales of variability and interactions across multiple
processes

Statistical dynamical models of the following form are too general:

Yt =M(Yt−1,Yt−2, . . . ,θm).

In statistics, we might then consider:

Time-varying transition operators in linear Markov models/switching
models

Mechansitic-Motivated Conditional Markov models



Nonlinearity Through Time-Varying Parameters:
Threshold Models

Consider the “regime-dependent” switching vector (spatial) process, Yt :

Yt =


M1Yt−1 + ηt , if `1,
M2Yt−1 + ηt , if `2,
...

...
MJYt−1 + ηt , if `J ,

where the threshold criterion for the jth regime, `j , can depend on the
process Yt , and/or some covariates, Xt .

Note that we typically assume ηt ∼ N(0,Cη,j) (i.e., the forcing
variance-covariance matrix may change by regime.)

(E.g., see Berliner et al. 2000; Wu et al., 2013, and many others for examples)

These models can be inefficient for certain processes.



Scientific Motivation: Nonlinearity



Statistical Parameterization: General Nonlinear DSTM

What do these processes have in common? linear terms, quadratic
nonlinear terms, exogenous input variables and/or multiviarate interaction
(and stochastic forcing/noise)

They also should allow for linear and nonlinear transformations. Why?

mechanistic processes: e.g., density dependent growth, competition
(predator-prey), dimension reduction

stability: e.g., preventing explosive behavior

It is useful to think about a general form for this type of model.



Statistical Parameterization: General Quadratic
Nonlinearity (GQN)

General quadratic nonlinearity (GQN) process model: (scalar form for ith
component, i = 1, . . . , n; Wikle and Hooten, 2010; Wikle and Holan, 2011):

Yt(i) =
n∑

j=1

aijYt−1(j) +
n∑

k=1

n∑
`=1

bi ,k` Yt−1(k)g(Yt−1(`);θg ) + ηt(i)

{ηt(·)} – dependent Gaussian noise

“General” because of the g(Yt−1(`);θg ) term.

Exogenous inputs can go into g( ) or enter into the {a} and {b} parameters
(hierarchically)

Recall, this model is usually considered as a latent (conditionally Gaussian)

process; there is an observation equation that maps Y to the observations



Quadratic Nonlinearity

Major Problem: There are too many parameters (O(n3)) to estimate
directly in typical spatio-temporal applications without extra information
or regularization!

Solutions:

Mechanistic (science)-based parameter shrinkage (hard shrinkage – many
parameters are set to zero) [invasive species reaction-diffusion eqn. ]

Reduced dimension basis-function random effects representation (with
multiscale basis functions)

Regularization priors (soft shrinkage; e.g., stochastic search variable
selection (SSVS), lasso, elastic net, horseshoe priors; deterministic model
output to inform priors – “pre-training”)

In practice, we combine these!



Soft Shrinkage: Model Assisted Prior Elicitation
(Pre-Training)

In many cases, one has information about parameters from other sources.

E.g., in the physical and biological sciences, this information can be from
large (typically) deterministic simulation models.

Deterministic Model Output as “Data”: The hierarchical
modeling framework easily allows one to condition the various sources
of information on the true process of interest.

Model Output to Elicit Priors Through Surrogates: Fit the
process model (surrogate or emulator) to the deterministic model
output to get an a priori understanding of parameter importance.
Thus, one builds informative priors that help regularize an
over-parameterized model.

I This can be used in conjunction with SSVS (or other shrinkage priors).



“Deep” Hierarchical QGN DSTM: Overview

The hierarchical nonlinear DSTM is essentially a multi-level (“deep”)
GLMM w/ a latent conditional Gaussian dynamical process and
regularization priors. Requires MCMC implementation.

Data Model: zt |Yt ,θh ∼ EF (HtYt ;θh),

Conditional Mean: f (Yt) = µt + Φαt + Ψβt

Nonlinear Dynamical Process: αt ∼ GQN(αt−1,A(θA),B(θB),θg ; Cη)

Process 2 (problem specific): [{βt}|θβ]

Process Mean: [{µt}|θµ] (can depend on covariates)

Regularization Priors: [θA,θB |ζ]

Problem Specific Hyperparameters: [θh,θg ,θβ,θµ, ζ,Cη]



Recall: Assimilating Ocean Color Observations

(Leeds et al. 2014)



Prediction of Primary Production (Phytoplankton) in
Coastal Gulf of Alaska

Data Assimilation: combine satellite ocean color with information in
mechanistic computer model for a coupled ocean and ecosystem model
(ROMS-NPZDFe; Fiechter et al. 2009)

Multivariate Quadratic Nonlinear Model: (surrogate dynamical model) on
coefficients from basis function expansion on phytoplankton, sea surface
height (SSH), and sea surface temperature (SST) (multivariate)

Priors: pretraining on mechanistic model output (4 years, 1998-2001; 8 day
averages) [e.g., emulator-based prior elicitation for regularization]

Implementation: MCMC (fairly time consuming)

Predict: use satellite ocean color observations for phytoplankton, and
mechanistic model output for SSH and SST; predict for 2002



Model Predictions of log(CHL) and Uncertainty



Robust (But Expensive)

The parametric nonlinear GQN model described above is flexible,
interpretable, and can accommodate many different types of
dynamical processes and uncertainty quantification

But, this model

I can be difficult to implement computationally due to the
high-dimensionality of the hidden states and parameters

I typically requires sophisticated regularization (and/or lots of
information)



Alternative Non-Linear Models



Alternative Nonlinear S-T Models?

Alternatives? Other flexible methods that don’t require us to estimate so
many parameters; consider approaches from outside of statistics but
include formal uncertainty quantification. Some we have been working on:

Individual-based models (simple bottom-up rules; highly
interpretable, computationally challenging)

Analog methods (“mechanism free models”)

Recurrent Neural Networks

In some cases, can be very parsimonious and flexible, but often require a
lot of data and traditionally don’t include principled uncertainty
quantification.



Example: Statistical Individual-Based Models (IBMs)

The biggest challenges with modeling IBMs are the estimation of parameters and,
more critically, the realistic quantification of uncertainty associated with the data,
model and parameters.

In McDermott et al. (2017) we consider a hierarchical extension of a
stochastic self-propelled particle (SPP) model (Vicsek et al. 1995) to
represent the collective movement of guppies in a tank.

Important Model Rules: fish movement based on behavior of neighbors;
important - covariates can influence behavior (e.g., shelter)

Computation: hybrid ABC-MCMC algorithm



A Computationally Efficient Alternative: S-T Analog
Models

Analog forecasting was invented by meteorologists in the 1920s (similar
notions in ecology: e.g., Sugihara and May, 1990)

Simple idea: find historical “analogs” to current situation and assume the
new future will evolve like the past (e.g., find closest sets of evolving maps
and weight them)



Example: Mallard Duck Settling Pattern Prediction

McDermott et al. (2017): Bayesian Non-Gaussian S-T Analog Model



A Computationally Efficient Alternative: Recurrent Neural
Networks (Echo State Networks, ESNs)

Crucially: W and U are chosen at
random then assumed to be fixed
(subject to a spectral radius
constraint for W)!

Huge cost saving in terms of
training – only the output weights
V need be estimated (usually with
a ridge penalty)!

So, it is a nonlinear model but,
depending on go(·), can be fit
with regression or glm methods.

Very fast! (But, requires a lot of

data)



Statistical ESN Example: 6 Month SST Predictions for
10/2015 and 10/2016

Need to add uncertainty quantification: McDermott and Wikle (2017; parametric

bootstrap); McDermott and Wikle (2018; fully Bayesian)



Spatio-Temporal Support of Data and Processes



Spatio-Temporal Support of Data and Processes

With technological advancement, we expect ever increasing data volume –
particularly, “high-frequency” and remotely-sensed data.

A major challenge for statisticians and scientists is how to address likely
disparities between the scales at which the data were collected and those
at which we would like to do inference or prediction, as well as to remove
redundant information.

Areas of current research:

High-frequency information as covariates

Change-of-support (resolution) in time and space (particularly
challenging for non-Gaussian data with uncertainty)

Optimal resolution/data reduction



High Frequency Covariates Example: Spawning Success of
Missouri River Sturgeon



Aggregation Error and Change-of-Support



Ex: Optimizing Support Relative to CAGE

Consider just one (active) time period from the Chlorophyll example; CAGE
algorithm; 318 clusters were optimal (reduced from 5255 grid cells)



Some important things I didn’t get to talk about

multivariate processes and interactions

multi-type data

adaptive design of monitoring systems

extremes

model selection and evaluation

diagnostics and verification

sampling issues

S-T point processes/ S-T random sets

Computation! Approximate and distributed computing are increasingly
important.



THANK YOU! (and Shameless Promotion)

THANK YOU!! If you have questions or would like references to anything
I talked about, please feel free to contact me: wiklec@missouri.edu

Existing Book:

New Book – Coming: Spring 2018


