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Why use state-space Bayesian surplus 
production model? 

• State-space Bayesian surplus production model (Meyer 
and Millar1999) considers not only observation error, but 
also process error 

• Bayesian methods combine the likelihood with the prior 
distributions of each parameter to calculate a posterior 
distribution including both sources of information  

• Demographic information allows us to develop an 
informative prior for r for smoothhound sharks 
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Data inputs 

• Catch (one single series) 
• Indices of abundance: 

1. NMFS SE Bottom Longline (NMFSSEBLL) 
2. Groundfish Trawl_Fall (GROUNDTRF) 
3. Groundfish Trawl_Summer (GROUNDTRS)  
4. Small Pelagics Trawl (SMALLPELTR)  
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Catches of smoothhound sharks in the 
U.S. Gulf of Mexico, 1982-2012 



Linear coverage of abundance indices for 
Mustelus spp. in the U.S. Gulf of Mexico 
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Model configuration 
• Model started in 1982 and ended in 2012 
• The first year in which both CPUE and catch data were 

available was 1982 
• Each individual index of abundance value was weighted 

equally  
• Model is fitted to the CPUEs and catch is treated as a 

known constant 
• Time invariant process error variance prior was assumed 

for the base run  
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State-space Bayesian surplus production model 
Surplus production model is reparameterized by expressing 
the annual abundance as a proportion of carrying capacity: 
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Observed catch rates (Ij,t) relate to unobserved states (Pt) 
through a stochastic observation model for Ij,t given Pt  

( ) 1
1 1982

PP P e ε=

1
1 1 1(1 ) tPt

t t t t
CP P rP P e
K

ε−
− − −

 = + − − 
 

Hierarchical for the initial year 
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MCMC simulation 
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• Two chains  
• A thinning interval of 5 was used to minimize parameter 

autocorrelation 
• An initial 50,000 iterations were discarded 
• Another 20,000 iterations with a thinning interval of 5 were 

run to generate the posterior distributions and DIC (sample 
size: 2*20,000/5=8,000) 
 



Prior and posterior distributions for 
key model parameters in the base run 



Predicted fits to the four indices of abundance in the base run 



Predicted exploitable number and exploitation rate in the base run 

MSST 
 
 
 
 
 
 
 
 
 
HMSY 



Phase plot of the combined relative exploitable number 
and exploitation rate trajectories in the base run  
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Projections  
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Projection period (2013-2022) 

• Projections were governed by the same population dynamics used to fit the model during 
1982-2012, but without process error 

• Unknown parameters and unobservable states were estimated given the data and priors 
during model fitting using MCMC 

• Estimated values of K, r, P2012, and a fixed Total Allowable Catch (TAC) were used for 
projections 10 years (ca. 1.5 generation times) of stock status under six alternative 
constant catch level harvesting strategies (no catch (0), the catch in 2012 (1xC2012), 
2xC2012, 3xC2012, 4xC2012, and MSY)  

• Variability in estimated K, r, and P2012 is thus propagated into the future through each 
MCMC iteration 
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Projected probability of overfished and overfishing trajectories 
under six alternative constant catch levels for the base run 



Tripling the 2012 catches would still provide a sufficient buffer from both the overfished and overfishing limits 

Projected probability of overfished and overfishing in 2022 
under six alternative constant catch levels for the base run 

    
 



Prior and posterior distributions of process error variances 
for the base and time invariant process error variance runs 

   

Moderate(Base) Small 

Large (Vague) 



Fits to abundance indices under time invariant process error variance priors 
 
 



MSST 
 
 
 
 
 
 
 
HMSY 

Predicted exploitable number and exploitation rate 
under time invariant process error variance priors 

 
 
 



Prior and posterior distributions of process error variances 
for the base and time varying process error variance runs 

   

Moderate(Base) 

Small-Then-Moderate Moderate-Then-Small 



Fits to abundance indices under time varying process error variance priors 
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HMSY 

Predicted exploitable number and exploitation rate 
under time varying process error variance priors  

 



Stock status in 2012 for all runs, and relative exploitable number 
and exploitation rate trajectories for the base run  
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Benchmarks and reference points   



Model performance 



 Conclusions 
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• The base run model fit well captured the increasing trend in the four indices 
available with the proper process error variance configurations 

• The base run indicated a not overfished/no overfishing stock status in the terminal 
year (2012) 

• The base run projections suggested that tripling the 2012 catches would still 
provide a sufficient buffer from both the overfished and overfishing limits 

• Phase plot depicting the probability of overfished/overfishing could be used as a 
convenient management tool to implement overfished/overfishing policies at a 
variety of risk tolerance levels 

• Model fit to the CPUE series, predicted abundance, harvest rate, NMSY, HMSY, and stock 
status  were all affected by the process error variance prior configurations 

• Best model may be identified by finding the process error variance prior configuration that 
yields the lowest normalized RMSE and/or DIC values 

• It is very challenging to explicitly use natural variability information to set and justify a given 
process error variance prior configuration 
 

 



Thank You 
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