

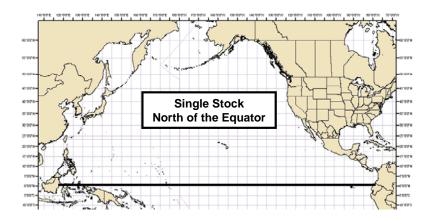
NOAA

Sensitivity of a Length-based Age-structured Stock Assessment Model Developed for North Pacific Swordfish (*Xiphias gladius*) to Estimated Growth

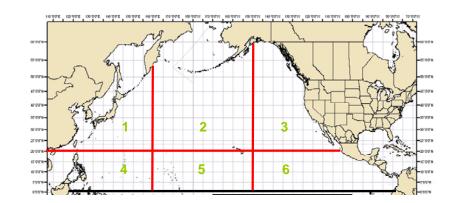
¹SEFSC ²SWFSC Dean Courtney¹ Kevin Piner²

Nov, 2014

Courtney, D. L., and K. Piner. 2009. Age structured stock assessment of North Pacific swordfish (*Xiphias gladius*) with Stock Synthesis under a single stock scenario. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-3/08.


Outline

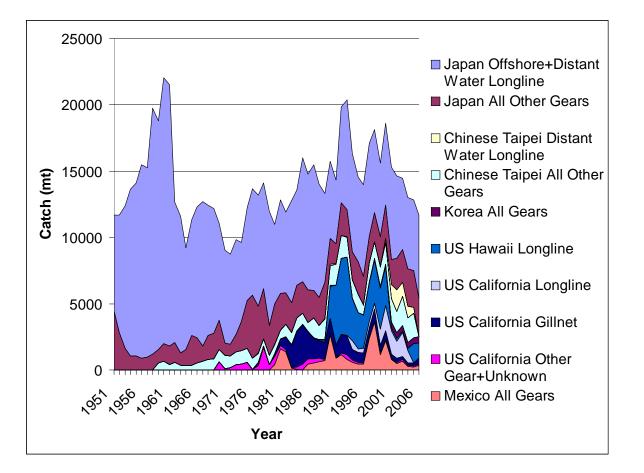
- Model sensitivity to internally estimated growth
 - External versus Internal (Stock Synthesis)
 - Combined sex versus two sex
- Caveats of the application
 - No age composition data
 - No sex specific length composition data
 - Based on preliminary model (stock structure)



Preliminary SS Model Structure

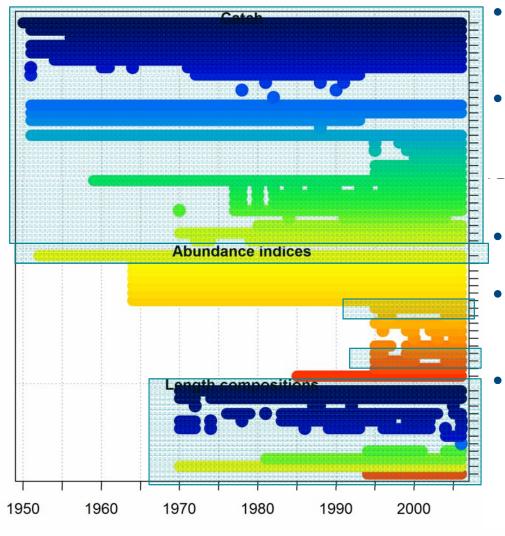
- Standardized CPUE
 - Single stock north of the equator

- Catch and length data
 - Regionally stratified (6 regions)
 - Quarterly time step



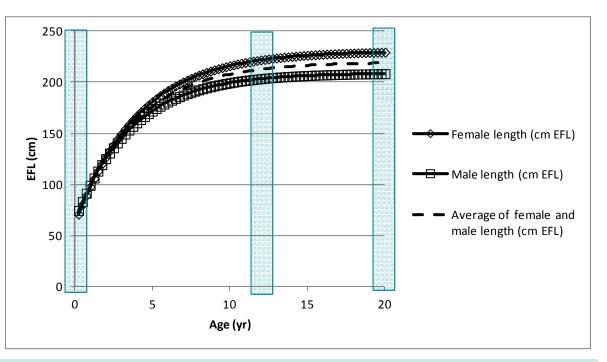
Input Data

• Catch


• 10 fleets

Input Data by Type and Year

Data by type and year


Year

- Catch by region
 - 33 fleets
- Abundance (standardized CPUE)
 - 3 surveys
 - Plus several regional surveys not fit in likelihood
- No age composition data
- Length composition
 - 10 series
 - Selectivity
 - Length based
 - Primarily asymptotic, but with domeshaped for some fleets and time blocks within fleets

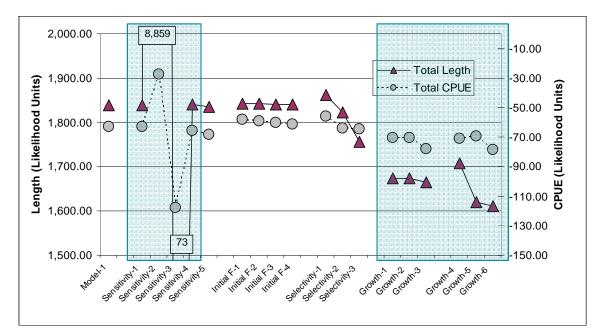
Externally Estimated Growth

	Operational Central Pacific	Operational Central Pacific	
Model parameters	Females	Males	
I	230.5 (EF) +- 3.94 (se)	208.9 (EF) +- 5.60 (se)	Uchiyama J. H. and R. L.
$L_{\infty (cm)}$	n = 712	n = 580	Humphreys Jr. 2007. citing:
K	0.246 +-0.019	0.271 +- 0.034	De Martini et al. (2007)
t_0 (yr)	-1.24 +- 0.167	-1.37 +- 0.259	$\boxed{EFL_t = EFL_{\infty} \left(1 - e^{-k(t-t_0)} \right)}$
Max age (yr) in analysis (CNP)	12	11	$\frac{ETL_t - ETL_{\infty}(1 - \epsilon)}{1 - \epsilon}$
Max length (cm EFL) in analysis	259	229	$W(kg) = aEFL^{b}$
Max age (yr) exploratory (NWP)	21	13	

- Growth rates differ by sex
- But no sex specific length comps
- => Used combined sex model

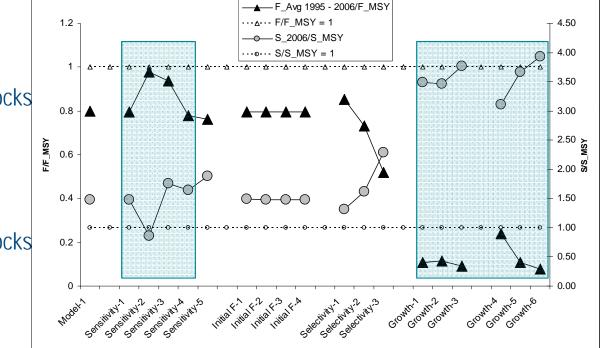
- The independent data used to estimate growth were presumably collected from size-selective fisheries, and therefore might be biased toward faster growing fish
 - von Bertalanffy growth (VBG) estimated internally within SS
 - While taking into account the size-selectivity of the fisheries which were estimated simultaneously

- Estimated growth within SS
 - Combined sex model
 - k, L_{a_min}
 - k, L_{a_min} , L_{a_max}
 - k, $L_{a_{min}}$, $L_{a_{max}}$, time blocks

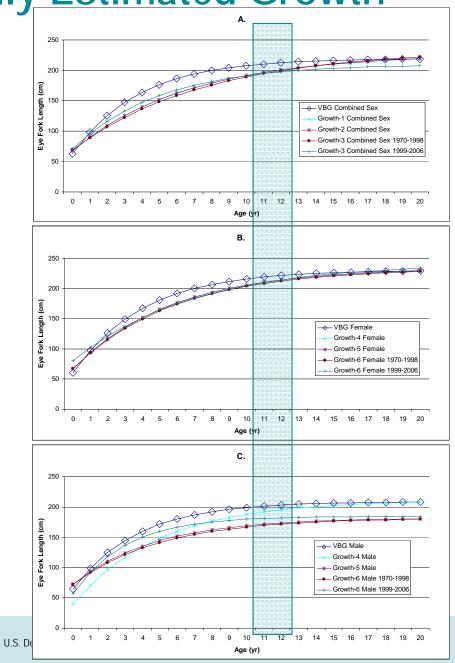

(Growth-1) (Growth-2) (Growth-3)

- Separate sex model
 - k, L_{a_min}
 - k, L_{a_min}, L_{a_max}
 - k, $L_{a_{min}}$, $L_{a_{max}}$, time blocks

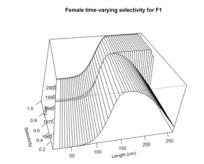
(Growth-4) (Growth-5) (Growth-6)



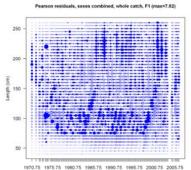
- Model sensitivity
- Estimated growth
 - Combined sex
 - k, L_{a_min}
 - k, L_{a_min}, L_{a_max}
 - k, $L_{a_min}^{-}$, $L_{a_max}^{-}$, time blocks
 - Separate sex
 - k, L_{a_min}
 - k, L_{a_min}, L_{a_max}
 - k, L_{a_min} , L_{a_max} , time blocks
- Length composition variance adjustment
 - VarAdj* input N
 - 0.01*VarAdj* input N

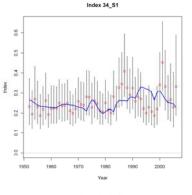


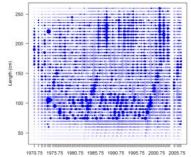
- Model sensitivity
- Estimated growth
 - Combined sex
 - k, L_{a_min}
 - k, L_{a_min}, L_{a_max}
 - k, L_{a_min}, L_{a_max}, time blocks
 - Separate sex
 - k, L_{a_min}
 - k, L_{a_min}, L_{a_max}
 - k, L_{a_min}, L_{a_max}, time blocks
- Length composition variance adjustment
 - VarAdj* input N
 - 0.01*VarAdj* input N

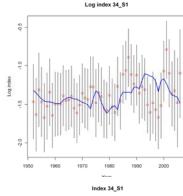


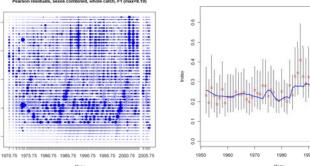
 All estimated growth curves were lower (indicating slower growth) than the independently estimated growth curve from the Central North Pacific for ages 2 - 14

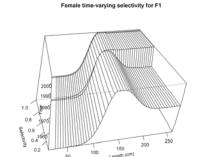


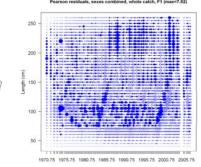

- Estimated growth within SS
 Combined sex model
- k, L_{a_min}
- k, L_{a_min}, L_{a_max}
- k, L_{a_min}, L_{a_max,}
- time blocks

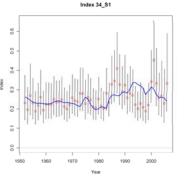

Female time-varying selectivity for F

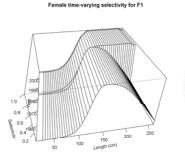

ale time-varying selectivity for F1

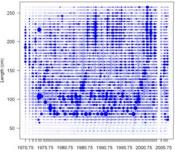


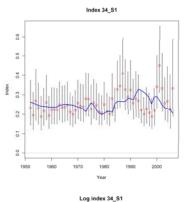




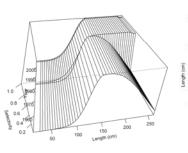


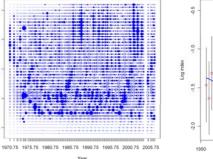


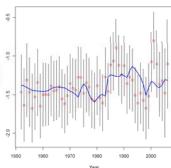

- Estimated growth within SS
- Two sex model
- k, L_{a_min}
- k, L_{a_min}, L_{a_max}
- k, L_{a_min}, L_{a_max,}
- time blocks



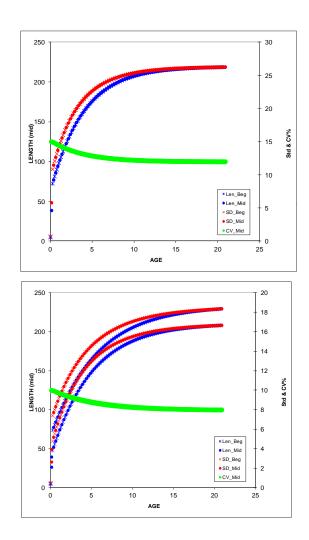




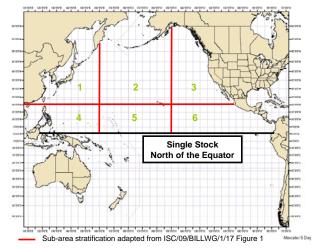


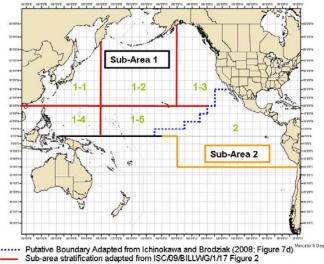


son residuals, sexes combined, whole catch, F1 (max=7.4



Caveats of the Application

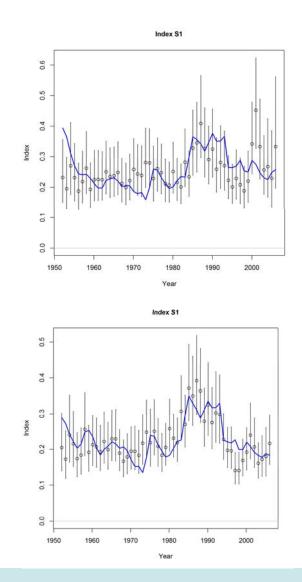

- Internally estimated growth sensitivity (not shown):
 - Assumed CV of length at age
 - Example combined sex
 - 15% for young fish to 12% for old fish
 - Example two sex
 - 10% for young fish to 8% for old fish
 - Recruitment timing
 - Quarter of year assigned to recruitment
 - Natural mortality
 - Estimated externally



Caveats of the Application

- Based on preliminary model (stock structure)
 - Preliminary model
 - One stock (NP)
 - Final model
 - Two stock (WNP)

Putative Boundary for Stock Scenario - 2



Caveats of the Application

- One stock (NP)
 - Data conflict length comp and CPUE resulted in poor fit to CPUE

- Two stock (WNP)
 - Data conflict reduced
 - CPUE more consistent with that expected based on the length comps

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 16

Conclusions

- Model sensitive to internally estimated growth
 - likelihood components
 - (e.g., Length comp and CPUE)
 - Stock status
 - (e.g. relative to F/F_{MSY} and S/S_{MSY})
- Caveats (preliminary model)
 - Data conflicts (CPUE vs length comp)
 - Down weight length comp to improve fit to CPUE
 - Data conflict reduced in two stock model

Thank you

Billfish Working Group for International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 18

			К	t_0	L_inf
VBG	Combined Sex		0.26	-1.31	219.66
Model -1	Combined Sex		0.26	-1.31	219.66
Growth-1	Combined Sex		0.15	-2.38	226.59
Growth-2	Combined Sex		0.15	-2.39	227.45
Growth-3	Combined Sex	1951-1998	0.13	-2.70	234.42
Growth-3	Combined Sex	1999-2006	0.20	-2.08	210.32

			к	t_0	L_inf
VBG	Female		0.25	-1.24	230.50
VBG	Male		0.271	-1.37	208.9
Growth-4	Female		0.18	-1.89	233.75
Growth-4	Male		0.20	-1.03	211.03
Growth-5	Female		0.18	-1.86	234.15
Growth-5	Male		0.22	-2.34	181.88
Growth-6	Female	1951-1998	0.17	-2.01	233.93
Growth-6	Male	1951-1998	0.20	-2.56	182.09
Growth-6	Female	1999-2006	0.15	-2.73	242.15
Growth-6	Male	1999-2006	0.33	-1.12	184.72

