Estimates of growth from direct ageing and mark-recapture data for Pacific bluefin tuna

CAPAM

Hiromu Fukuda, T. Kitakado, I. Yamasaki, T. Ishihara, T. Ohta, M. Watai, K. Fujioka, N. Suzuki, and T. Takeuchi

Pacific bluefin tuna growth study

Only the otolith annual rings has been used.

- Lack of information about Age-0 growth.
- **Extrapolated length < Observed length**

Fast growth at the early life stage

 Generally the growth@early life stage is fast in Scombroid fishes

PBF; 17 days post hatching (approx. 2 cm)

PBF; 40 days post hatching (approx. 8 cm)

To depict the growth of PBF including age 0.

Using several data source.

Direct readings of Otolith annual rings.

✤ Daily rings.

Mark-recapture experiment.

To consider seasonal & two-stanza growth.

Data -Otolith daily / annual rings-

Annual rings & Fork length

✓ age 1 to 26 (70.5 to 260.5 cm FL, n=976)

Daily rings & Fork Length

✓ 51 to 453 days post hatching (18 to 60.1 cm FL, n=175)

Data -Mark recapture experiment-

- Release; late July to early Sep., 1996-2013
 @Pacific side of Japan (Tosa-bay, Kochi)
- Length@release;16.5-34 cm FL (age-0) (more than 10,000 fish)
- Recapture data (n); 1,113 fish
- Time@liberty;14 to 2,218 days.

Growth functions

Otolith Daily / Annual rings data (VBGF)

$$L(a) = L_{\infty}(1 - e^{-K(a - t_0)})$$

a; observed age

- M-R experiment data (Febens GF) $\Delta L(\delta T) = (L_{\infty} - L_{rel})(1 - e^{K\delta T})$ L_{rel} ; Length@release δT ; Time at liberty
- LL was calculated for each 3 component (Otolith Daily/annual rings and M-R) and maximized with assuming log-normal error distributions.

Results (Annual rings only / Annual & Daily rings)

There was not much difference between two growth curve.

✤ A curve did not fit to the daily rings data (estimate < observe).</p>

Results (Otolith and Mark-recapture data)

* Larger K and smaller L_{∞} than those from otolith data only.

✤ A curve fit to the young stage but not to the age after 1.

The effect of temperature on growth of PBF

- PBF experience big change in Temperature during migration.
- Seasonality and/or 2-stanza.

Fig. experienced temperature of age-0 PBF

Growth model

T

2-stanza growth

 $\overline{}$

$$\begin{array}{c} L_{a} \\ = \begin{cases} L_{\infty}(1 - e^{-K_{1}(a - t_{0})}) & (a < t_{1}) \\ L_{\infty}(1 - e^{-K_{1}(t_{1} - t_{0}) - K_{2}(a - t_{1})}) & (a \ge t_{1}) \end{cases}$$

- Seasonality is assumed to be appeared on age/time.
 - Otolith data

$$a_{otolith_s} = a + \frac{\alpha e^{-DDa}}{2\pi} \sin(2\pi(a - t_0))$$

– M-R experiment data

$$\delta T_{tag_s} = \delta T + \frac{\alpha e^{-DD\delta T}}{2\pi} \sin(2\pi\delta T)$$

- α ;amplitude a ;observed age l
- δT ;Time@liberty DD;Descending rate

Likelihood profile for t_1

• In both models, an age which is switching stanza is at young stage ($t_1 < 1$).

$$L_{a} = \begin{cases} L_{\infty}(1 - e^{-K_{1}(a - t_{0})}) & (a < t_{1}) \\ L_{\infty}(1 - e^{-K_{1}(t_{1} - t_{0}) - K_{2}(a - t_{1})}) & (a \ge t_{1}) \end{cases}$$

2 stanza models were better than 1 stanza model

- Seasonal growth model shows smaller AIC, than non-seasonal model.
- In a VBGF part, 2-stanza_non seasonal model showed a better fit to the data.

	Linf	K1	K2	Τ0	alpha	DD	SD1;	SD2;	SD3;	
							D_ring	A_ring	M-R	
1-Stanza_NS	204	0.562	-	0.0	-	-	0.19	0.20	0.25	-399
1-Stanza_Seas	225	0.290	-	0.0	1.0	0.0	0.30	0.11	0.23	-1601
2-Stanza_NS	254	0.455	0.162	0.0			0.15	0.07	0.26	-2403
2-Stanza_Seas	248	0.285	0.185	0.0	1.0	0.0	0.23	0.07	0.23	-2577

Results (Two-stanza_seasonal model)

- Fit well to both the M-R data and otolith annual rings data.
- Fit to the daily rings data remains as an issue.

Results (Two-stanza_non_seasonal model)

- Bad fit to the M-R data but a better fit to the VBGF part than that of the seasonal model.
- Fit to the daily rings data were better than seasonal model.

Summary

- A simple VBGF (1-stanza_No seas) could not depict growth of PBF especially the fast growth in a young age.
- Otolith daily rings and tag data showed tendency of a seasonal growth.
- 2-stanza growth model showed a better result.
- 2-stanza-non seasonal model fits well to the Otolith daily and Annual rings data.

✤<u>Next step</u>

- \checkmark Develop a seasonal growth modeling.
- ✓ Try an age-specific-K option in SS for PBF stock assessment model.

Thank you for your attention

Thermal physiology

Results (One-stanza_seasonal model)

