Computational issues

K Kristensen

26.02.2017
TMB Intro

- Template Model Builder (TMB).
- R-package inspired by AD Model Builder (ADMB).
- Laplace approximation using automatic differentiation (AD).
- Interface: User codes the likelihood function in C++ ➞ flexible!
 - No formula interface.
 - Can use multiple data sources.
 - No limitations on complexity of mean / covariance structures.
- Combines external libraries: CppAD, Eigen, CHOLMOD
What is automatic differentiation?

- Given function
 \[f : \mathbb{R}^n \rightarrow \mathbb{R} \]

 Apply the chain rule for each step of a computation.

 - Example: \(f(x_1, x_2, x_3) = \exp(x_1x_2 + x_3) \)

- Forward mode. \(n \) forward passes through the computational graph to get gradient.
 - Expensive gradient
 \[\text{work}(\nabla f) > n \times \text{work}(f) \]
 - Easy to implement

- Reverse mode. One forward pass and one reverse pass to get gradient:
 - Cheap gradient
 \[\text{work}(\nabla f) < 4 \times \text{work}(f) \]
 - Memory consuming
 - Difficult to implement
Laplace and gradient

- Given joint negative log likelihood \(f(u, \theta) \) of random effects \(u \in \mathbb{R}^n \) and parameters \(\theta \in \mathbb{R}^k \).

- Marginal likelihood:

\[
L(\theta) = \int e^{-f(u, \theta)} \, du
\]

- Recall the Laplace approximation of the negative log-likelihood:

\[
- \log L^*(\theta) = -n \log \sqrt{2\pi} + \frac{1}{2} \log \det(H(\hat{u}(\theta), \theta)) + f(\hat{u}(\theta), \theta). \tag{1}
\]

\[
\hat{u}(\theta) = \arg\min_u f(u, \theta). \tag{2}
\]

We use \(H(u, \theta) \) to denote the Hessian of \(f(u, \theta) \) w.r.t. \(u \)

\[
H(u, \theta) = f''_{uu}(u, \theta). \tag{3}
\]
User implements the joint negative log likelihood $f(u, \theta)$ in C++.

1. Sparsity pattern of Hessian wrt. random effects u is autodetected using a symbolic analysis.
2. Laplace approximation is automatically calculated (involving AD up to order 2).
3. TMB contains a carefully selected scheme for the marginal likelihood gradient that requires a minimum amount of memory while at the same time maintaining the cheap gradient principle. This involves AD up to order 3.

- 1–3 are available as function objects from the R session. Passed to an optimizer by the user.
Theta logistic population model

\[X_t = X_{t-1} + r_0 \left(1 - \left(\frac{\exp(X_{t-1})}{K} \right)^\theta \right) + e_t, \]

\[Y_t = X_t + u_t, \]

where \(e_t \sim N(0, Q) \) and \(u_t \sim N(0, R) \).

- Population size (state vector \(\sim \) random effects) \(X \)
- Observations \(Y \)
- Parameters: \(r_0, K, \theta, Q, R \).
TMB implementation - C++ template

- Data and parameter section

```cpp
DATA_VECTOR(Y); // Data
PARAMETER_VECTOR(X); // Random effects

// Parameters
PARAMETER(logr0); Type r0 = exp(logr0);
PARAMETER(logtheta); Type theta = exp(logtheta);
PARAMETER(logK); Type K = exp(logK);
PARAMETER(logQ); Type Q = exp(logQ);
PARAMETER(logR); Type R = exp(logR);

int n = Y.size(); // Number of time points
Type f = 0;       // Initialize summation
```
/ Likelihood for process
for(int t=1; t<n; t++) { // start at t = 1
 Type mean = X[t-1] +
 r0 * (1.0 - pow(exp(X[t-1]) / K, theta));
 f -= dnorm(X[t], mean, sqrt(Q), true);
}

// Likelihood for observations
for(int t=0; t<n; t++) { // start at t = 0
 f -= dnorm(Y[t], X[t], sqrt(R), true);
}

// Return result
return f;
library(TMB)

Compile and load the C++ model
compile("thetalog.cpp")
dyn.load(dynlib("thetalog"))

Read the data
Y <- scan("thetalog.dat", skip=3, quiet=TRUE)
data <- list(Y=Y)
```r
## All model parameters with initial values
parameters <- list(
  X = rep(0, length(Y)),
  logr0 = 0,
  logtheta = 0,
  logK = 6,
  logQ = 0,
  logR = 0
)

## Make Function objects and call optimizer
obj <- MakeADFun(data, parameters, random="X")
system.time(opt <- nlminb(obj$par, obj$fn, obj$gr))

## Get standard errors
rep <- sdreport(obj)
```
TMB output

```r
## sdreport(.) result
## Estimate Std. Error
## logr0 -1.5494040  0.5046455
## logtheta -0.2450515  0.6313152
## logK  6.6274196  0.1156406
## logQ -2.8309443  0.2335364
## logR -2.9927966  0.2182285
## Maximum gradient component: 1.636775e-05
```
TMB output

```r
plot( as.list(rep, "Est")$X )
```

Estimated states X

![Graph showing estimated states X over time with log(Population size) on the y-axis and Time on the x-axis. The graph displays fluctuations and trends in the estimated states over time.]
Advanced features

▶ Density constructors GMRF, MVNORM, ARk, SEPARABLE, SCALE,...
▶ A fairly complete list of distributions and special functions: besselK, dtweedie
▶ Automatic bias correction when reporting a non-linear function of random effects.
▶ Automatic generate one-step-ahead quantile residuals for model validation.
▶ Likelihood profiling.
▶ Automatic differentiation from the user template.
▶ Parallelization of the user template: parallel_accumulator
▶ Easy simulation experiments from within the user template: SIMULATE.
Sparsity

- The good graph: New random effects are linked to few past random effects.

```
nll -= dnorm(X1, 0, 1, true);
nll -= dnorm(X2, X1, 1, true);
nll -= dnorm(X3, X1, 1, true);
nll -= dnorm(X4, X1, 1, true);
nll -= dnorm(X5, X1, 1, true);
nll -= dnorm(X6, X1, 1, true);
```
Visualize pattern

```r
image(obj.good$env$spHess())
```
Sparsity

- The bad graph: New random effects linked to many past random effects.

\[
\begin{align*}
nll &= \text{dnorm}(X_1, 0, 1, \text{true}); \\
nll &= \text{dnorm}(X_2, 0, 1, \text{true}); \\
nll &= \text{dnorm}(X_3, 0, 1, \text{true}); \\
nll &= \text{dnorm}(X_4, 0, 1, \text{true}); \\
nll &= \text{dnorm}(X_5, 0, 1, \text{true}); \\
nll &= \text{dnorm}(X_6, X_1 + X_2 + X_3 + X_4 + X_5, 1, \text{true});
\end{align*}
\]
Visualize pattern

```r
image(obj.bad$env$spHess())
```

Dimensions: 6 x 6
A space time TMB example from scratch

- **Poisson data.** Latent log-intensity u is a random field.

 \[\text{counts} \sim \text{Pois}(su + \mu) \]

- $u(x, t)$ a 2D array indexed by spatial coordinate x and time index t.

 \[u_t = \phi u_{t-1} + \varepsilon_t \quad \varepsilon_t \sim N(0, Q^{-1}) \]

- Time-stationary

- $Q = Q_0 + \delta I$ is the precision of a Gaussian Markov random field.

\[
Q_0(i, j) = \begin{cases}
|\text{ne}(i)| & i = j \\
-1 & i \sim j \\
0 & \text{otherwise}
\end{cases}
\]
Show a simulation

Time: 1

Time: 2

Time: 3

Time: 4
Before we start: Overview of covariance structures

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMRF</td>
<td>Gaussian Markov random field</td>
</tr>
<tr>
<td>MVNORM</td>
<td>Multivariate normal</td>
</tr>
<tr>
<td>UNSTRUCTURED_CORR</td>
<td>Unstructured correlation matrix</td>
</tr>
<tr>
<td>AR1</td>
<td>Stationary 1st order autoregressive</td>
</tr>
<tr>
<td>ARk</td>
<td>Stationary kth order autoregressive</td>
</tr>
<tr>
<td>SEPARABLE</td>
<td>Separable extension of two densities</td>
</tr>
<tr>
<td>SCALE</td>
<td>Scale a density</td>
</tr>
</tbody>
</table>

Example

```cpp
// evaluate negative log likelihood at point u.
GMRF(Q)(u);
```
Implementing the model (random effects)

Pass sparse matrices Q_0 and I from R to C++:

```
DATA_SPARSE_MATRIX(Q0);
DATA_SPARSE_MATRIX(I);
```

Pass parameters from R to C++

```
PARAMETER_ARRAY(u); // Latent variables
PARAMETER(logdelta); // GMRF Parameter (space)
PARAMETER(logitphi); // AR1 Parameter (time)
```

Add negative log likelihood of random field:

```
Type f = 0; // Joint neg. log lik.
Type delta = exp(logdelta);
Type phi = invlogit(logitphi);
Eigen::SparseMatrix<Type> Q = Q0 + delta * I;
f += SEPARABLE( AR1(phi), GMRF(Q) ) (u);
```
Implementing the model (data)

- Given u add Poisson observations

```cpp
    // Parameters
    PARAMETER(mu);
    PARAMETER(scale);

    // Data
    DATA_VECTOR(counts);

    // Log-mean of observations
    vector<Type> logmu_counts = mu + scale * u;

    // Likelihood contribution
    f -= dpois(counts, exp(logmu_counts), true).sum();
```
Running the model from R

```r
obj <- MakeADFun(data, parameters, random="u")
fit <- nlminb(obj$par, obj$fn, obj$gr)
sdr <- sdreport(obj)
sdr
```

```r
## sdreport(.) result
## Estimate Std. Error
## mu 0.4299948 0.03617505
## scale 0.9851019 0.01664911
## logdelta -1.9479875 0.13148526
## logitphi 0.3807035 0.05461652
## Maximum gradient component: 0.03692913
```
Performance hints for large models

- The normalizing constant of the GMRF can be expensive to calculate when many spatial nodes. Hint: Drop the normalizing constant in the template using GMRF(Q, false) and normalize the prior from R using TMB::normalize(obj).
- Re-order nodes using TMB::runSymbolicAnalysis(obj).
- Use BLAS
Checking the Laplace approximation

From `?TMB::checkConsistency`:

\[
\int \int \exp(-f_\theta(u, x)) \, du \, dx = 1
\]

It follows that the joint and marginal score functions are central:

\[
E_{u, x} [\nabla_\theta f_\theta(u, x)] = 0
\]

\[
E_x \left[\nabla_\theta \log \left(\int \exp(-f_\theta(u, x)) \, du \right) \right] = 0
\]
Add simulation code to template

- **Process simulation:**

```c
f += SEPARABLE( AR1(phi), GMRF(Q) ) (u);
// Add this to allow simulation:
SIMULATE {
    SEPARABLE( AR1(phi), GMRF(Q) ).simulate (u);
    REPORT(u);
}
```

- **Data simulation:**

```c
f -= dpois(counts, exp(logmu_counts), true).sum();
// Add this to allow simulation:
SIMULATE {
    counts = rpois(exp(logmu_counts));
    REPORT(counts);
}
```
Checking LA output

chk <- checkConsistency(obj)
chk

Parameters used for simulation:
mu scale logdelta logitphi
0.5000000 1.0000000 -2.0000000 0.4054651

Test correct simulation (p.value):
[1] 0.5222433
Simulation appears to be correct

Estimated parameter bias:
mu scale logdelta logitphi
0.004564256 -0.012517242 -0.004222719 0.030402358
The state of MCMC in TMB

- Package adnuts (on CRAN)
- Package tmbstan (on CRAN)

A few use cases

- A full Bayesian analysis (slow in high dimension)
  ```r
tmbstan(obj)
  ```

- A full Bayesian analysis with Laplace approx for random effects
  ```r
tmbstan(obj, laplace=TRUE)
  ```

- Sampling random effects given the MLE obtained from TMB:
  ```r
  obj2 <- MakeADFun(..., map=map)
tmbstan(obj2)
  ```
Goodness of fit residuals

- How not to.

\[
r = \frac{\text{observed} - \text{expected}}{\sqrt{\text{variance}}}
\]

where expected = \(\exp(s\hat{u} + \mu) \).
- Experiment: Generate residuals based on the true model.
Naive residuals - true model

Normal Q–Q Plot

ks.test: 0
Simulation based residuals

- Given the data generating measure P_{θ} of the pair (u, data) of random effects and data.
- If we knew u it would be easy to check the distributional assumption of data... And that of u itself...
- Can we plug in \hat{u}? NO!
- However, we can plug in a posterior sample u^* given the data.
- Works in high dimension in contrast to some other methods.
Getting the residuals

Given the parameter vector $\theta = (\mu, s, \delta, \phi)$.

1. Draw posterior sample u^* using MCMC

```r
FIXED <- factor(NA)
map <- list(mu = FIXED, scale = FIXED,
            logdelta = FIXED, logitphi = FIXED)
obj2 <- MakeADFun(data, parameters, map = map)
library(tmbstan)
sample <- extract(tmbstan(obj2))$u
```

2. Transform with CDF and randomize

```r
mean <- exp(sample * scale + mu)
Fx <- ppois(data$counts, mean)
px <- dpois(data$counts, mean)
u <- runif(length(Fx))
residual <- qnorm(Fx - u * px)
```
Simulation based residuals - true model

Normal Q–Q Plot

ks.test: 0.317439

Series residual

ACF

Lag

Sample Quantiles

Theoretical Quantiles

0 10 20 30 40

0.0 0.2 0.4 0.6 0.8 1.0

0 10 20 30 40

0.0 0.2 0.4 0.6 0.8 1.0

Theoretical Quantiles

Sample Quantiles
Simulation based residuals - wrong model

- Including nugget effect not accounted for by model.
Comments on residuals

- Pearson like residuals are flawed.
- Simulation based residuals do work.
- However, the power of these residuals may be disappointing when assessing the MLE $\hat{\theta}$. The MLE is often able to compensate for a wrong model specification in unexpected ways.