Wildlife population assessment methods

Takis Besbeas

CAPAM 2015, La Jolla, CA October 2015

National Centre for Statistical Ecology

Athens University of Economics and Business

Outline

- IPM in ecology
- IPM aspects
 - Modelling data reflecting population size
 - Goodness of fit (with B.J.T. Morgan)
 - New methods of model-fitting (with R. Langrock)
- Conclusions

Motivation

- In ecology, aspects of the demography of wild animals are estimated through different studies, resulting in multiple data sets.

- Main types of study:
 - individual studies (MRR data)
 - population studies
 (abundance data)

Individual studies (MRR data)

- These provide information on survival from studying previously marked animals.
- Animals may be observed again alive (recaptures) or dead (recoveries):

1963	1147	14	4	1	2	1
1964	1285		20	3	4	0
1965	1106			10	1	2
1966	1615				9	7
1967	1618					12

Population studies (abundance data)

These also arise in a variety of different forms:

Illustrating example I: British herons (Ardea cinerea)

Mark-recovery and census data

Methods and notation

- Use of capture-recapture methods or state-space models to form MRR likelihood(s) (Lebreton et al, 1992; Gimenez et al, 2007).
- Use of state-space models to form "census" likelihood:

$$N_{t+1} = T_t N_t + \eta_t$$
$$y_t = z_t N_t + \epsilon_t$$

- Use of integrated population modelling to estimate parameters.
- - p denotes productivity rate.

Relevant state-space models

$$\begin{pmatrix} N_1 \\ N_2 \\ \vdots \\ N_{a-1} \\ N_{a+} \end{pmatrix}_{t+1} = \begin{pmatrix} 0 & p\phi_1 & \cdots & p\phi_1 & p\phi_1 \\ \phi_2 & 0 & 0 & 0 & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & \phi_a & \phi_a \end{pmatrix}_t \begin{pmatrix} N_1 \\ N_2 \\ \vdots \\ N_{a-1} \\ N_{a+} \end{pmatrix}_t + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_{a-1} \\ \eta_{a+} \end{pmatrix}_t$$

$$y_t = \begin{pmatrix} 0 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} N_{1,t} & N_{2,t} & \cdots & N_{a+,t} \end{pmatrix} + \epsilon_t$$

based on Poisson for recruitment and binomial for survival assumptions.

Model fitting method

Computational demand

		KF	Bay	yes	MCKL	
Parameter	(Besbeas e	t al 2002)	(Brooks e	t al 2004)	(de Valpine, 2012)	
	Est	SE	Mean	SD	Est	SE
ϕ_1 intercept	0.540	0.068	0.543	0.069	0.54	0.066
ϕ_1 slope	-0.196	0.059	-0.197	0.060	-0.19	0.059
ϕ_a intercept	1.542	0.070	1.550	0.071	1.54	0.069
ϕ_a slope	-0.241	0.039	-0.243	0.039	-0.24	0.038
λ intercept	-3.945	0.082	-3.910	0.087	-3.924	0.036
λ slope	-0.034	0.004	-0.034	0.004	-0.034	0.004
p intercept	-0.693	0.090	-0.668	0.095	-0644	0.087
p slope	-0.026	0.004	-0.027	0.005	-0.027	0.005
σ	159.47	21.87	169.11	25.47	159	22.70

Minor differences but methods differ in ease of application

Model fitting method

Computational demand

		KF	Bay	/es	MCKL	
Parameter	(Besbeas e	t al 2002)	(Brooks et	al 2004)	(de Valpir	ne, 2012)
	Est	SE	Mean	SD	Est	SE
ϕ_1 intercept	0.540	0.068	0.543	0.069	0.54	0.066
ϕ_1 slope	-0.196	0.059	-0.197	0.060	-0.19	0.059
ϕ_a intercept	1.542	0.070	1.550	0.071	1.54	0.069
ϕ_a slope	-0.241	0.039	-0.243	0.039	-0.24	0.038
λ intercept	-3.945	0.082	-3.910	0.087	-3.924	0.036
λ slope	-0.034	0.004	-0.034	0.004	-0.034	0.004
p intercept	-0.693	0.090	-0.668	0.095	-0644	0.087
p slope	-0.026	0.004	-0.027	0.005	-0.027	0.005
σ	159.47	21.87	169.11	25.47	159	22.70

Minor differences but methods differ in ease of application

Advantages of integration

Simultaneous description of all the data

- Estimation of parameters not estimable from separate analyses
- Generally more precise parameter estimators
- Reduction in correlation between estimators

IPM aspects

- Assumption of independence (Besbeas et al, 2009; Abadi et al 2010; Chandler and Clark, 2014)
- Model selection (Besbeas et al, 2015)
- Modelling data reflecting population size
 - Pseudo replication
 - Penalised likelihood
- Goodness-of-fit
- New methods of model-fitting

Modelling data reflecting population size

- □ In many cases, the only type of data available are a timeseries of population abundances y_t .
 - See, eg, the Global Population Dynamics Database
- A frequently used model for log-abundance is the Gompertz SSM

$$X_t = a + cX_{t-1} + \eta_t, \qquad \eta_t \sim N(0, \tau^2)$$
$$Y_t = X_t + \epsilon_t, \qquad \epsilon_t \sim N(0, \sigma^2)$$

Modelling data reflecting population size

However practical performance eg wrt partition variance is less than ideal:

Simulation $a=1, c=0.3, \sigma=\tau=0.2, n=25$

tau

IPM protection

D Recall, eg for two age classes, $N_t = (N_{1,t}, N_{2+,t})$

$$N_{1,t+1} | \boldsymbol{N}_t \sim \operatorname{Po}(p\phi_1 N_{2+,t})$$
$$N_{2+,t+1} | \boldsymbol{N}_t \sim \operatorname{bin}(N_{1,t} + N_{2+,t}, \phi_a)$$
$$y_t | \boldsymbol{N}_t \sim \operatorname{N}(N_{2+,t}, \sigma^2)$$

\square Thus process variances τ are fully specified in IPM.

IPM breakdowns: fully time-dependent parameters

■ Model notation: $\phi_1, \phi_2, \phi_3, \phi_a/\lambda_t/p = \{c, t\}$ Best Kth-order time-dependent model:

	Model	-l	$\hat{\sigma}$	$\Delta \mathrm{AIC}$
K=0	$\mathrm{cccc}/\lambda_t/\mathrm{c}$	8942.41	651.97	347.0
1	$\mathrm{cccc}/\lambda_t/t$	8781.12	16.95	162.4
2	$\mathrm{ccct}/\lambda_t/t$	8652.30	0.00	42.8
3	$\mathrm{tcct}/\lambda_t/t$	8600.97	0.00	78.1
• •				94 <value<216< td=""></value<216<>
5	$\mathrm{tttt}/\lambda_t/t$	8539.98	0.00	232.1
			· · · ·	
-	${ m vvvv}/\lambda_t/t$	8695.92	0.00	0

Several models, incl. best AIC, result in unrealistic findings, eg $\hat{\sigma} = 0$

IPM breakdowns: individual heterogeneity

- Several authors (King et al, 2008; Besbeas et al, 2009) have considered the use of more general process error structures as might result for example from individual heterogeneity.
- We replace the binomial number of survivors

$$N_{t+1} \sim \operatorname{bin}(n,\phi)$$

with beta-binomial

$$N_{t+1} \sim \text{betabin}(\text{mean} = n\mu, \text{var} = n\mu(1-\mu)\{1 + \frac{n-1}{1+\theta}\theta\})$$

where $\theta \geq 0$ is an unknown overdispersion parameter

Similarly for recruitment (negative binomial)

$$N_0 \sim \text{NB}(\text{mean} = pn, \text{variance} = pn(1 + \theta pn))$$

• For illustration we concentrate on adult survival ϕ_a

Profile log-likelihoods from selected model

Two solutions: a) Pseudo replication

In non-IPM, various authors (Dennis et al, 2010; Knape et al, 2012) have proposed the use of replicated sampling as a means to improve estimation:

$$y_{t,k} = X_t + \epsilon_{t,k}, \quad k = 1, \cdots, K$$

Data from Robert and Casella (2010):

Replicated sampling

Practical performance is vastly improved, even when K=2.

$$y_{t,k} = X_t + \epsilon_{t,k}, \quad k = 1, \cdots, K$$

Four pseudo replicates

In IPM, Besbeas and Morgan (2015) propose pseudo replication if no replicates are available:

Several variants, incl. suggestions by referee.

Parameter estimate comparison

No replication			Replication with 3 values		Replication with 5 values	
parameter	Estimate	se	Av. Estimate	Av. se	Av. Estimate	Av. se
1	-0.171	0.049	-0.174	0.049	-0.174	0.049
2	-0.021	0.004	-0.023	0.004	-0.022	0.005
3	0.411	0.074	0.410	0.074	0.409	0.075
4	-0.022	0.006	-0.018	0.006	-0.016	0.006
5	0.931	0.105	0.924	0.106	0.924	0.107
6	-0.023	0.009	-0.019	0.009	-0.017	0.009
7	1.325	0.100	1.341	0.100	1.340	0.102
8	-0.017	0.005	-0.013	0.005	-0.009	0.005
θ	0.053	0.009	0.043	0.009	0.042	0.011
10	-2.019	0.026	-2.021	0.026	-2.021	0.026
11	-0.831	0.046	-0.833	0.046	-0.835	0.046
12	-0.094	0.092	-0.110	0.093	-0.118	0.095
σ	0.000	_	213.22	16.42	313.39	23.30

Two solutions: b) Penalised likelihood

- An alternative approach is to adopt a penalised likelihood approach (Wang & Lindsay, 2005) to bound σ away from 0.
- Thus

$$\log L_j^{\gamma} = \log L_j - \gamma h(\sigma)$$

where $\gamma > 0$ and $h(\sigma)$ becomes large when σ is small.

• We adopt $h(\sigma) = -\log \sigma$ and we observe performance by application to the heron data and simulation.

Profile log-likelihoods

Model vvvv/ λ_t/t

(Penalised) MLEs

Simulation

- Three models (simple to complex)
- Four levels of heterogeneity (S/M/L/XL)
- Observed data sample size
- 500 replications

RMSE ratios: RMSE($\gamma = i$)/RMSE($\gamma = 0$)

Data weighting and parameter stability

- **Recall that observation std** σ has multiple roles:
 - 1) Partitions variance in SSM
 - 2) Weights influence of different data sets
 - 3) Controls model-selection (anonymous referee)
- Penalising σ away from zero offers a natural way to investigate influence of population data and explore sensitivity of model results to different data weightings.

95% CIs for parameters as population data are downweighted

IPM aspects

- Assumption of independence
- Model selection
- Modelling data reflecting population size
 - Pseudo replicate
 - Penalised likelihood
- Goodness-of-fit
- New methods of model-fitting

Motivation

- State-space methods are receiving increasing attention in ecology.
- "Constructing diagnostics for judging the goodness of fit of statespace models to data is complex" (Newman et al, 2014, p117).

IPM Goodness-of-fit

Component-wise but informal:

- eg comparing observed vs expected m-arrays for MRR components.
- comparing observed
 vs fitted trends for
 census components.

Bootstrap gof options available but not widely employed.

A new goodness-of-fit procedure

Besbeas and Morgan (2014) propose the use of calibrated simulation to assess component gof:

- $\hfill\square$ Simulate $\ensuremath{\theta_i} \sim N(\ensuremath{\hat{\theta}}, \Sigma), \ i=1,\cdots,s$
- **D** For each θ_i
 - Work out fitted values \hat{x}_i and simulate new data $x_i \sim f(\cdot|\theta_i)$ for each component model
 - Plot $D(x; \hat{x}_i)$ vs $D(x_i; \hat{x}_i)$ for some measure of discrepancy D.
- If the model fits the data well, one would expect approximately half of the points to lie above the diagonal (Johnson, 2004; Fletcher, 2009).
- Note:
 - Model is fitted only once.
 - The approach is akin to Bayesian p-values.

Choice of discrepancy measure

- There is complete freedom in the choice of distance measure
 - cf Millar and Meyer, 2000: p-value=0.69, 0.27, 0.50 and 0.42.
- MRR / GLM

• Freeman-Tukey: $D(\boldsymbol{x}; \boldsymbol{e}) = \sum_{i} (\sqrt{x_i} - \sqrt{e_i})^2$

 $f \square$ Time series $m x_t$

MAPE
 $D(\boldsymbol{x}; \hat{\boldsymbol{x}}) = \frac{100}{n} \sum_t |(x_t - \hat{x}_t)/x_t|$ MPE
 $D(\boldsymbol{x}; \hat{\boldsymbol{x}}) = 100 \max\{(x_t - \hat{x}_t)/x_t\}$

Illustrating example II: lapwings (Vanellus vanellus)

Mark-recovery and index of abundance data

Motivating example: IPM

D Model $\phi_1(w_t), \phi_a(w_t)/\lambda(year)/p(year)$, following model-selection:

Simulation comparison with bootstrap: MRR component

Calibrated simulation vs bootstrap p-values when true model (vv/v) is fitted by:

Calibration of test -statistic

100 simulations from selected model, fitted 3-ways

Less wrong model

Wrong model

Modelling site by year survey data

- In practice, census data are rare.
- Often we collect spatio-temporal observations, c_{it} (eg BBS, CBC).
- We typically model the c_{it} using a Poisson-based linear model:

 $c_{it} \sim Po(\mu_{it})$ $\log(\mu_{it}) = s_i + u_t$

Modelling site by year survey data

- In practice, census data are rare.
- Often we collect spatio-temporal observations, c_{it} (eg BBS, CBC).
- We typically model the c_{it} using a Poisson-based linear model:

 $c_{it} \sim Po(\mu_{it})$ $\log(\mu_{it}) = s_i + u_t$

- "Census" likelihood can be formed in two or one stages
 - Based on a derived index of abundance, $y_t \propto e^{u_t}$
 - Building a dynamic model directly on the u_t

Pros and Cons of the two approaches

Details in

- Maunder (2001) fisheries
- Besbeas and Freeman (2006) ecology
- Similar performance trading off speed vs efficiency
- However one-stage method offers greater flexibility not just for modelling counts but for incorporating data of an entirely different nature.
 - For example presence/absence data (Freeman and Besbeas, 2012).

Illustrating example II revisited

Simulated calibration gof for Poisson distribution of c_{it}

Site by year survey data: model selection

Model	- <i>l</i>	np	ΔAIC
$Poisson(\mu_{it})$	3629.8	266	246.8
$ ext{ZIP}(\mu_{it},\pi)$	3629.8	267	248.8
$\operatorname{Negbin}(\mu_{it}, \theta)$	3594.0	267	177.2
Poisson-Tweedie (μ_{it}, D, a)	3589.3	257	167.8
$ ext{ZIP}(\mu_{it},\pi_i)$	3520.4	497	490.0
Hurdle $Po(\mu_{it}, \pi_i)$	3478.4	497	406.0
$\operatorname{Negbin}(\mu_{it}, \theta_i)$	3426.3	497	301.8
$\operatorname{Negbin}(\mu_{it}, \theta(\mathrm{CV}))$	3504.4	268	0

Individual site θ_t vs $\theta(CV)$

We can then fit the (integrated) model exactly as we do for Poisson data.

From deterministic to stochastic transitions

Recall

$$c_{it} \sim Po(\mu_{it})$$

$$\log(\mu_{it}) = s_i + u_t$$

$$e^{u_t} = (\phi_a e^{u_{t-1}} + p\phi_1 \phi_a e^{u_{t-2}})$$

We introduce lognormal "process error"

$$e^{u_t} = (\phi_a e^{u_{t-1}} + p\phi_1 \phi_a e^{u_{t-2}})\varepsilon$$

and adopt a Bayesian approach.

Deterministic vs stochastic transitions

Comparison of performance between "best" and "worst" (constant) models from analysis of index:

«Every time I think I know what's going on, suddenly there's another layer of complications. I just want this damn thing solved.»

John Scalzi

IPM aspects

- Assumption of independence
- Model selection
- Modelling data reflecting population size
 - Single replicate
 - Multiple replicate
- Goodness-of-fit
- New methods of model-fitting

Hidden Markov Models - overview

- Flexible and mathematically tractable time series model.
- **Two discrete-time stochastic processes:** *observed* and *hidden.*
- Hidden process is an N-state Markov chain.
- Observed process determined by underlying hidden state.

 Applications, inter alia, in speech recognition, biology, medicine, psychology, economics and finance.

SSM estimation via hidden Markov models

- HMMs have the same two-process structure as SSMs.
- \square In SSMs: S_t continuous-valued.
- **Discretizing** S_t yields approximation by HMM.
- Benefit: HMM methodology becomes applicable.

Illustration of an HMM-based population model

 \square N_t : true (unknown) number of individuals at time t (the **states**).

 $\square N_t = N_{1t} + N_{at} \text{, where } N_{1t} \sim Po(pN_t) \text{ and } N_{at} \sim bin(N_t, \phi) \text{.}$

- Specifying some upper bound for N_t , this is a Markov chain (with a lot of states, but only two parameters).
- Observations, conditional on states: $X_t | N_t = j \sim bin(j, r_t)$
- HMM likelihood structure as usual, using a forward algorithm
- If the upper bound for N_t is in the thousands, computer memory can be an issue
 - consider coarser state-space, e.g. [0, 10), [10, 20), ..., [4990, 5000)
 instead of 0, 4999.
- Integrated Population model can be formulated and fitted as usual.

Reference example: lapwings

Model $\phi_1, \phi_a/\lambda/p$ (Homogeneous Markov chain)

Parameter		KF				
	w=100	w=40	w=20	w=10	w=8	
$arphi_1$	0.427	0.419	0.418(0.066)	0.418	0.418	0.415(0.066)
$oldsymbol{arphi}_a$	1.448	1.401	1.397(0.063)	1.396	1.396	1.374(0.062)
λ intercept	-4.678	-4.680	-4.681(0.033)	-4.681	-4.681	-4.683(0.032)
p intercept	-0.978	-0.885	-0.879(0.077)	-0.875	-0.874	-0.942(0.079)
$\log \sigma^2$	10.977	11.693	11.764(0.277)	11.804	11.824	11.186(0.273)

Reference example: lapwings

Model $\phi_1, \phi_a/\lambda/p$ (Homogeneous Markov chain)

Parameter		KF				
	w=100	w=40	w=20	w=10	w=8	
$arphi_1$	0.427	0.419	0.418(0.066)	0.418	0.418	0.415(0.066)
$oldsymbol{arphi}_a$	1.448	1.401	1.397(0.063)	1.396	1.396	1.374(0.062)
λ intercept	-4.678	-4.680	-4.681(0.033)	-4.681	-4.681	-4.683(0.032)
p intercept	-0.978	-0.885	-0.879(0.077)	-0.875	-0.874	-0.942(0.079)
$\log \sigma^2$	10.977	11.693	11.764(0.277)	11.804	11.824	11.186(0.273)

Conclusions

Modelling data reflecting population size

- Replication has advantages and permits more sophisticated models to be fitted.
- Penalising σ natural way to investigate sensitivity of model results to different data weightings.

Goodness-of-fit

- For integrated models, gof preferably component-wise
- Different distance measures highlight different aspects of fit.
- Calibrated simulation appears to have reasonable potential.

Model-fitting

- HMMs provide a promising alternative.
- Computer memory can be an issue but more development to follow.

References

- Abadi, Gimenez, Altettaz, Schaub (2010). An assessment of integrated population models. *Ecology*, 91: 7-14.
- Besbeas, Freeman, Morgan, Catchpole (2002). Integrating mark-recapturerecovery and census data. *Biometrics*, 58: 540-547.
- Besbeas, Morgan (2014). Goodness of fit of integrated population models. *Methods Ecol. Eval.*, 5: 1373-1382.
- Besbeas, Morgan (2015). Pseudo replication for integrated population models. In revision.
- Brooks, King, Morgan (2004). A Bayesian approach to combining abundance and demographic data. *Animal Biod Cons*, 27: 515-529.
- Dennis, Ponciano, Taper (2010). Replicated Sampling increases efficiency in population monitoring. *Ecology*, 91: 610-620.
- de Valpine (2012). Frequentist analysis of hierarchical models for population dynamics. J. Ornith. 152: 393-408.
- □ Gimenez, Rossi, Choquet, Dehais, Doris, Varella, Vila, Pradel (2007) Statespace modelling of data on marked individuals. *Ecol Modell*, 206: 431-438.
- Maunder (2001). A general framework for integrating the standardization of CPUE into stock assessment models. *Can. J. Fish. Aquat. Sci* 58: 795-803.
- Newman et al (2014). *Modelling Population Dynamics*. Springer.

Thank you

10% MRR

Simulation comparison with bootstrap: GLM

Sampling distributions of parameter estimates

