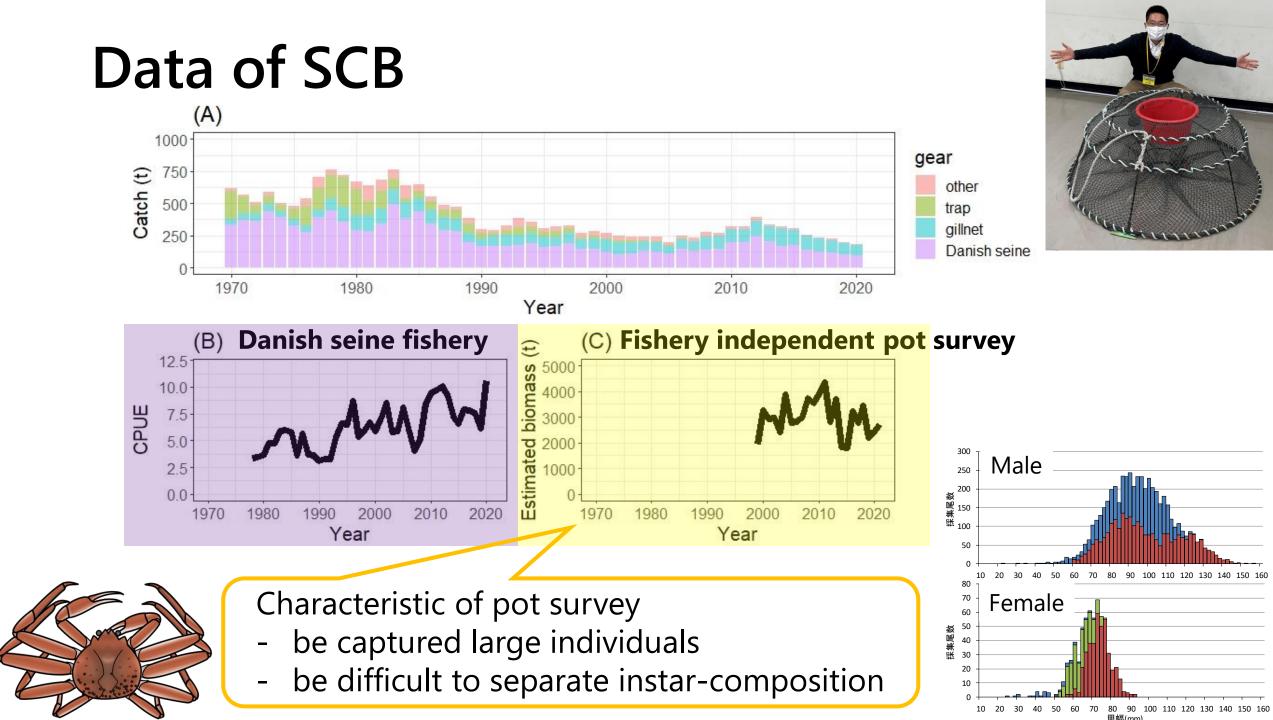
Tuning generic empirical MPs with simple conditioned OMs: A case study of Japanese data-limited stock

Kohei Hamabe Kunihiro Fujiwara Momoko Ichinokawa

National Research and Development Agency, **Japan Fisheries Research FRA** and Education Agency

Japanese empirical MP

- For data-limited stocks in Japan
 - Cannot be assessed based on age-structured models (e.g., VPA)
 - These stocks are called "type-2" stocks
 - CPUE and catch data are available in many cases


- Generic type-2 MP (hereafter, GT2 MP)
 - GT2 MP is an empirical MP for type-2 stocks
 - The MP have been developed based on an unconditioned OM in which data-limited situation and a wide range of uncertainties in population parameters are assumed (Okamura et al., in preparation)
 - Pros) being automatically applied for any stocks
 - Cons) the MP tends to calculate quite conservative ABC

The Sea of Japan subpopulation of snow crab in region B (SCB)

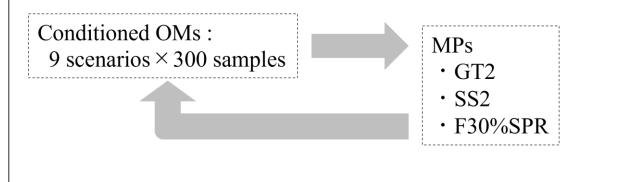
- The first stock to which the GT2 MP was proposed under the Revised Fisheries Act
- GT2 MP was not accepted by the stakeholders
 - The ABC calculated by GT2 MP was extremely small compared to the ABC calculated under the previously used reference point
 - F30%SPR with using survey abundance was used until then
- F30%SPR MP has not been fully evaluated under potential uncertainties in the estimation of reference points and survey abundance
- GT2 MP would result in highly conservative catch because uncertainties in the generic OMs may have been overestimated when considering the specific stock of SCB

Objectives

- Stock-specific MSE was constructed with simple conditioned OMs for SCB
- We compared performances between F30%SPR and GT2 MPs under the stock-specific MSE
- Stock-specific type-2 (SS2) MP have been developed by changing tuning parameters of GT2
- State-space surplus production model was employed to conditioned OMs according to data availability

Simulation flowchart

Conditioning of operating models (OMs)

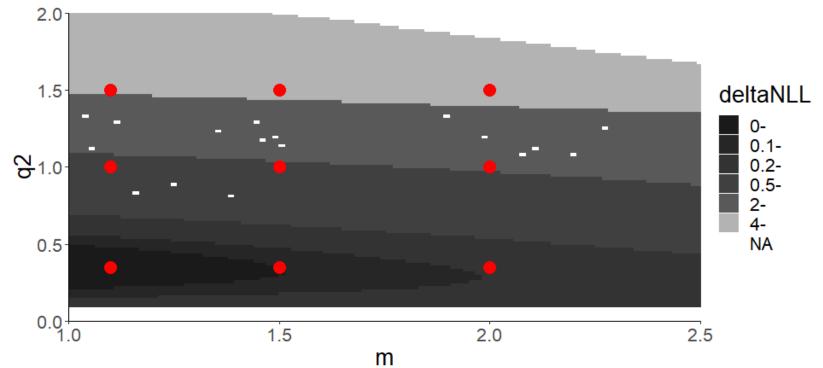

Models with nine scenarios where two fixed parameters were employed, and parameters of these models were estimated by MLE.

Generating posterior samples

300 posterior samples were generated by MCMC for each scenario.

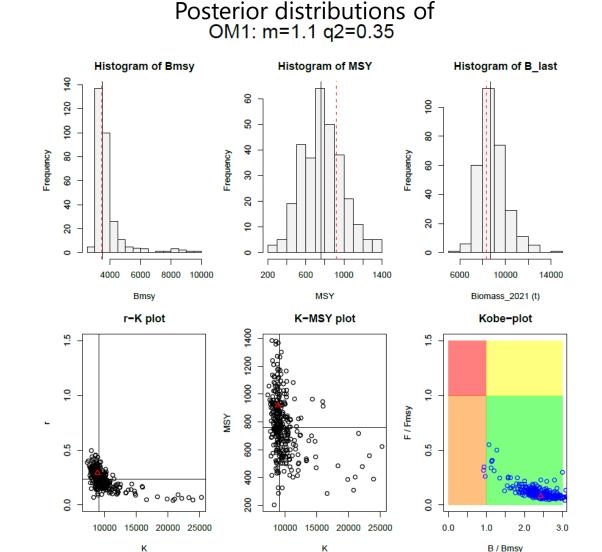
Conducting closed loop simulation

50 years forecasts were run based on conditioned parameters for each OM. Catches in forecasts were calculated from HCR in each MP.

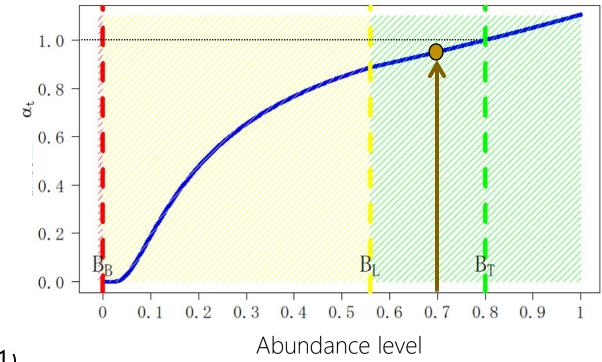


Comparison of performance between MPs based on the measures.

Simulation flow 1


- construction of 9 OM scenarios

- According to profile likelihood, two parameters were difficult to be estimated
 - Shape parameter of surplus production model (m)
 - A bias coefficient of survey abundance (q2)
- m (1.1, 1.5, 2.0) and q2 (0.25, 1.0, 1.5) were fixed


Simulation flow 2 - generating posterior samples

- Conditioned OM were estimated by MLE in self-coded TMB
- Posterior samples were generated by 'adnuts' package in R (Probably 'tmbstan' is more suitable)

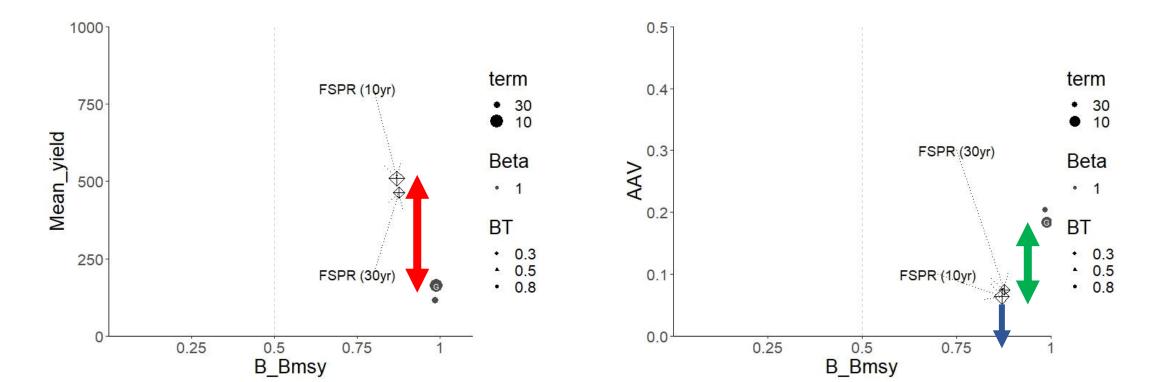
Candidate MPs - GT2 and SS2 MPs

- GT2 is the target-based empirical MP
- ABC is calculated from $\alpha_t \beta \bar{C}_t$
 - α_t : determined algorithm (right figure)
 - \bar{C}_t : average of last 5-years catches
 - β : an adjustment coefficient (default is to 1)
- SS2 is tuned below three options
 - *B_T* : 0.3, 0.5, 0.8 (GT2 is to 0.8)
 - β : 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 - Abundance level with last 5yr averaging
- 35 SS2 MPs were constructed

- **Blue line** is computed according to an algorithm
- The current abundance level (0.7 is above example) was calculated from the level of recent CPUE, when assuming a cumulative normal distribution of CPUEs

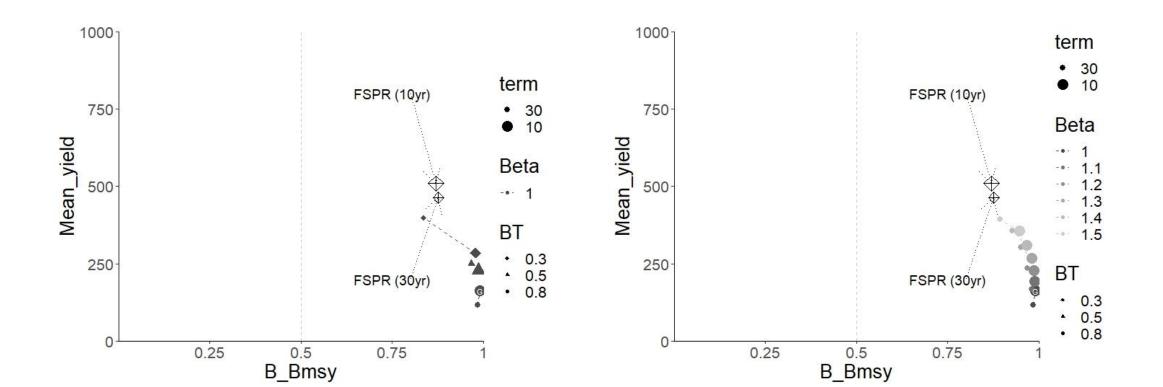
Candidate MP - F30%SPR MP

- Survey abundance
 - Abundance was calculated multiplied area by density
 - Density was calculated from the number of captured crabs and a catchability
 - Catchability of male was cited from previous study
 - Catchability of female was given the value assumed that instar composition is same as different region snow crab stock
 - But uncertainty of the estimated catchabilities is not known
- F%SPR based on survey data
 - F%SPR was calculated from instar-structured equilibrium model (Ueda et al., 2009)
 - In 2020, F%SPR was estimated as 0.22
 - Fishing rate (Catch/Biomass) was corresponded to 0.19
- (ABC) = 0.19*(average of last 5 years survey abundances)


Performance measures

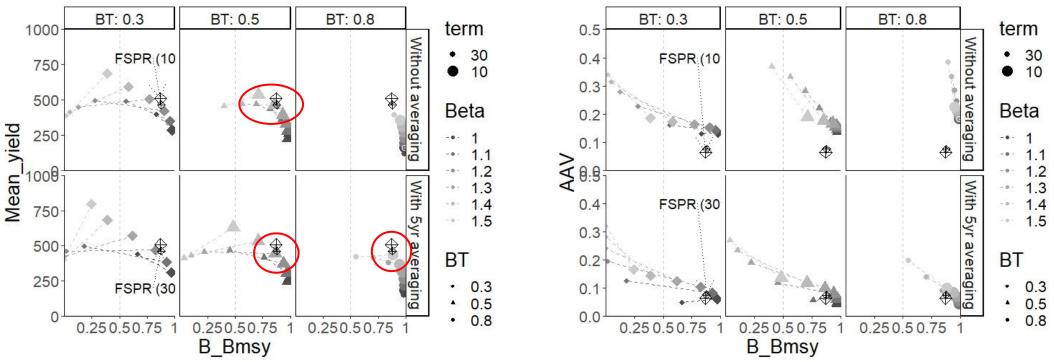
- The following three performance measures were established for the 10/30 years of management
- 1. a probability that biomass in 10/30 years after was over Bmsy (B_Bmsy)
- 2. mean catch over the management period, 10-/30-years duration (Mean_yield)
- 3. average catch variation (AAV) over the management period, 10-/30years durations

Results


- Trade-off plots of GT2 and F30%SPR

- The mean catch of GT2 was only half of that of F30%SPR (⇔)
- AAV of F30%SPR was half of that of GT2 (⇔)
- When managed at F30% SPR, there was a greater than 75% probability that the biomass exceeded Bmsy (\downarrow)

Results - Trade-off plots of SS2 and GT2


- The smaller BT, the larger the Mean_yield and the same B_Bmsy
- The larger Beta, the larger the Mean_yield and the slightly lower B_Bmsy
- The trade-off relationship was clearer changing Beta than changing BT.

Results

- Trade-off plots of SS2 and GT2

- With 5yr averaging option tended to have a smaller AAV
- SS2 shows higher risk of depleting the stock after 30 years of management
- No SS2 above Mean_yield of FSPR was confirmed when B_Bmsy level was the same of FSPR
- Several SS2 MPs (O) were close to F30%SPR performance

A good practice for...

- We demonstrate that SS2 MP could be developed by tuning GT2 by stockspecific MSE with simple conditioned OMs
- Compared to GT2, the tuned SS2 MPs can achieve higher catches and greater probabilities of exceeding Bmsy after 10 years
- Potential application to other Japanese 'type-2' stocks
 - State-space surplus production models are being attempted to be applied the 'type-2' stocks (Ichinokawa et al, this workshop)
 - However, estimation accuracy of absolute value was tended to be low
 - There is a possible direction of tuning GT2 through MSE with simple conditioned OM estimated by SSPM

Prospects for the future

For the flow of this MSE

- Considered production model-based MPs
- But model structures of OMs and MPs are the same, that is problem

For SCB stock management

- Employed more complicated model (e.g., age-structured models)
 - New trawl survey have begun since 2017 to capture small crabs
 - Models incorporating this data will have to be developed
 - FSPR in this MSE could not be considered F%SPR estimation error
- CPUE and pot survey standardizations

